列表详情
- 高级特性
- 切片
高级特性
掌握了Python的数据类型、语句和函数,基本上就可以编写出很多有用的程序了。
比如构造一个1, 3, 5, 7, ..., 99
的列表,可以通过循环实现:
L = []
n = 1
while n <= 99:
L.append(n)
n = n + 2
取list的前一半的元素,也可以通过循环实现。
但是在Python中,代码不是越多越好,而是越少越好。代码不是越复杂越好,而是越简单越好。
基于这一思想,我们来介绍Python中非常有用的高级特性,1行代码能实现的功能,决不写5行代码。请始终牢记,代码越少,开发效率越高。
切片
取一个list
或tuple
的部分元素是非常常见的操作。比如,一个list如下:
>>> L = ['Michael', 'Sarah', 'Tracy', 'Bob', 'Jack']
取前3个元素,应该怎么做?
笨办法:
>>> [L[0], L[1], L[2]]
['Michael', 'Sarah', 'Tracy']
之所以是笨办法是因为扩展一下,取前N个元素就没辙了。
取前N个元素,也就是索引为0-(N-1)的元素,可以用循环:
>>> r = []
>>> n = 3
>>> for i in range(n):
... r.append(L[i])
...
>>> r
['Michael', 'Sarah', 'Tracy']
对这种经常取指定索引范围的操作,用循环十分繁琐,因此,Python提供了切片
(Slice
)操作符,能大大简化这种操作。
对应上面的问题,取前3个元素,用一行代码就可以完成切片:
>>> L[0:3]
['Michael', 'Sarah', 'Tracy']
L[0:3]
表示,从索引0
开始取,直到索引3
为止,但不包括索引3
。即索引0,1,2,正好是3
个元素。
如果第一个索引是0
,还可以省略:
>>> L[:3]
['Michael', 'Sarah', 'Tracy']
也可以从索引1开始,取出2个元素出来:
>>> L[1:3]
['Sarah', 'Tracy']
类似的,既然Python支持L[-1]
取倒数第一个元素,那么它同样支持倒数切片,试试:
>>> L[-2:]
['Bob', 'Jack']
>>> L[-2:-1]
['Bob']
记住倒数第一个元素的索引是-1
。
切片操作十分有用。我们先创建一个0-99的数列:
>>> L = list(range(100))
>>> L
[0, 1, 2, 3, ..., 99]
可以通过切片轻松取出某一段数列。比如前10个数:
>>> L[:10]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
后10个数:
>>> L[-10:]
[90, 91, 92, 93, 94, 95, 96, 97, 98, 99]
前11-20个数:
>>> L[10:20]
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
前10个数,每两个取一个:
>>> L[:10:2]
[0, 2, 4, 6, 8]
所有数,每5个取一个:
>>> L[::5]
[0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95]
甚至什么都不写,只写[:]就可以原样复制一个list:
>>> L[:]
[0, 1, 2, 3, ..., 99]
tuple
也是一种list
,唯一区别是tuple
不可变。因此,tuple也可以用切片操作,只是操作的结果仍是tuple:
>>> (0, 1, 2, 3, 4, 5)[:3]
(0, 1, 2)
字符串'xxx'也可以看成是一种list,每个元素就是一个字符。因此,字符串也可以用切片操作,只是操作结果仍是字符串:
>>> 'ABCDEFG'[:3]
'ABC'
>>> 'ABCDEFG'[::2]
'ACEG'
在很多编程语言中,针对字符串提供了很多各种截取
函数(例如,substring
),其实目的就是对字符串切片。Python没有针对字符串的截取函数,只需要切片一个操作就可以完成,非常简单。
利用切片操作,实现一个trim()函数,去除字符串首尾的空格,注意不要调用str的strip()方法:
# -*- coding: utf-8 -*-
def trim(s):
lenth = len(s)
mark0 = 0
mark1 = 0
for i in range(lenth):
if s[i] != ' ':
mark0 = i
break
if i == lenth - 1:
return ''
for i in range(lenth):
if s[-i - 1] != ' ':
mark1 = -i - 1
break
return s[mark0:lenth + mark1 + 1]
# 测试:
if trim('hello ') != 'hello':
print('测试失败!')
elif trim(' hello') != 'hello':
print('测试失败!')
elif trim(' hello ') != 'hello':
print('测试失败!')
elif trim(' hello world ') != 'hello world':
print('测试失败!')
elif trim('') != '':
print('测试失败!')
elif trim(' ') != '':
print('测试失败!')
else:
print('测试成功!')
迭代
如果给定一个list或tuple,我们可以通过for
循环来遍历这个list
或tuple
,这种遍历我们称为迭代(Iteration)。
在Python中,迭代是通过for ... in
来完成的,而很多语言比如C语言,迭代list
是通过下标
完成的,比如Java代码:
for (i=0; i
可以看出,Python的for
循环抽象程度要高于C的for循环,因为Python的for循环不仅可以用在list或tuple上,还可以作用在其他可迭代对象上。
list
这种数据类型虽然有下标,但很多其他数据类型是没有下标的,但是,只要是可迭代对象,无论有无下标,都可以迭代,比如dict
就可以迭代:
>>> d = {'a': 1, 'b': 2, 'c': 3}
>>> for key in d:
... print(key)
...
a
c
b
因为dict
的存储不是按照list
的方式顺序排列,所以,迭代出的结果顺序很可能不一样。
默认情况下,dict
迭代的是key
。如果要迭代value
,可以用for value in d.values()
,如果要同时迭代key
和value
,可以用for k, v in d.items()
。
由于字符串也是可迭代对象,因此,也可以作用于for循环:
>>> for ch in 'ABC':
... print(ch)
...
A
B
C
所以,当我们使用for
循环时,只要作用于一个可迭代对象,for循环就可以正常运行,而我们不太关心该对象究竟是list
还是其他数据类型。
那么,如何判断一个对象是可迭代对象呢?方法是通过collections
模块的Iterable
类型判断:
>>> from _collections_abc import Iterable
>>> isinstance('abc', Iterable) # str是否可迭代
True
>>> isinstance([1,2,3], Iterable) # list是否可迭代
True
>>> isinstance(123, Iterable) # 整数是否可迭代
False
最后一个小问题,如果要对list
实现类似Java那样的下标循环怎么办?Python内置的enumerate
函数可以把一个list变成索引-元素对
,这样就可以在for
循环中同时迭代索引和元素本身:
for key in ['A','B','C']:
print(key)
for key,value in enumerate(['A','B','C']):
print(key,value)
上面的for
循环里,同时引用了两个变量,在Python里是很常见的,比如下面的代码:
>>> for x, y in [(1, 1), (2, 4), (3, 9)]:
... print(x, y)
...
1 1
2 4
3 9
列表生成式
列表生成式即List Comprehensions
,是Python内置的非常简单却强大的可以用来创建list
的生成式。
举个例子,要生成list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]可以用list(range(1, 11))
:
>>> list(range(1, 11))
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
但如果要生成[1x1, 2x2, 3x3, ..., 10x10]怎么做?方法一是循环:
>>> L = []
>>> for x in range(1, 11):
... L.append(x * x)
...
>>> L
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
但是循环太繁琐,而列表生成式则可以用一行语句代替循环生成上面的list:
>>> [x * x for x in range(1, 11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
写列表生成式时,把要生成的元素x * x
放到前面,后面跟for
循环,就可以把list创建出来,十分有用,多写几次,很快就可以熟悉这种语法。
for循环后面还可以加上if判断,这样我们就可以筛选出仅偶数的平方:
>>> [x * x for x in range(1, 11) if x % 2 == 0]
[4, 16, 36, 64, 100]
还可以使用两层循环,可以生成全排列:
>>> [m + n for m in 'ABC' for n in 'XYZ']
['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']
三层和三层以上的循环就很少用到了。
运用列表生成式,可以写出非常简洁的代码。例如,列出当前目录下的所有文件和目录名,可以通过一行代码实现:
>>> import os # 导入os模块,模块的概念后面讲到
>>> [d for d in os.listdir('.')] # os.listdir可以列出文件和目录
['.emacs.d', '.ssh', '.Trash', 'Adlm', 'Applications', 'Desktop', 'Documents', 'Downloads', 'Library', 'Movies', 'Music', 'Pictures', 'Public', 'VirtualBox VMs', 'Workspace', 'XCode']
for
循环其实可以同时使用两个甚至多个变量,比如dict
的items()
可以同时迭代key
和value
:
>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> for k, v in d.items():
... print(k, '=', v)
...
y = B
x = A
z = C
因此,列表生成式也可以使用两个变量来生成list
:
>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> [k + '=' + v for k, v in d.items()]
['y=B', 'x=A', 'z=C']
最后把一个list
中所有的字符串变成小写:
>>> L = ['Hello', 'World', 'IBM', 'Apple']
>>> [s.lower() for s in L]
['hello', 'world', 'ibm', 'apple']
使用内建的isinstance
函数可以判断一个变量是不是字符串:
>>> x = 'abc'
>>> y = 123
>>> isinstance(x, str)
True
>>> isinstance(y, str)
False
生成器
通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。
所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list
,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator
。
要创建一个generator
,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:
>>> L = [x * x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x * x for x in range(10))
>>> g
at 0x1022ef630>
创建L和g的区别仅在于最外层的[]
和()
,L是一个list
,而g是一个generator
。
我们可以直接打印出list
的每一个元素,但我们怎么打印出generator
的每一个元素呢?
如果要一个一个打印出来,可以通过next()
函数获得generator的下一个返回值:
>>> next(g)
0
>>> next(g)
1
>>> next(g)
4
>>> next(g)
9
>>> next(g)
16
>>> next(g)
25
>>> next(g)
36
>>> next(g)
49
>>> next(g)
64
>>> next(g)
81
>>> next(g)
Traceback (most recent call last):
File "", line 1, in
StopIteration
我们讲过,generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。
当然,上面这种不断调用next(g)实在是太变态了,正确的方法是使用for循环,因为generator
也是可迭代对象:
>>> g = (x * x for x in range(10))
>>> for n in g:
... print(n)
...
0
1
4
9
16
25
36
49
64
81
所以,我们创建了一个generator
后,基本上永远不会调用next()
,而是通过for
循环来迭代它,并且不需要关心StopIteration
的错误。
generator
非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。
比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:
1, 1, 2, 3, 5, 8, 13, 21, 34, ...
斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:
def fib(max):
n, a, b = 0, 0, 1
while n < max:
print(b)
a, b = b, a + b
n = n + 1
return 'done'
注意,赋值语句:
a, b = b, a + b
相当于:
t = (b, a + b) # t是一个tuple
a = t[0]
b = t[1]
但不必显式写出临时变量t
就可以赋值。
上面的函数可以输出斐波那契数列的前N个数:
>>> fib(6)
1
1
2
3
5
8
'done'
仔细观察,可以看出,fib
函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator
。
也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)
改为yield b
就可以了:
def fib(max):
n, a, b = 0, 0, 1
while n < max:
yield b
a, b = b, a + b
n = n + 1
return 'done'
这就是定义generator
的另一种方法。如果一个函数定义中包含yield
关键字,那么这个函数就不再是一个普通函数,而是一个generator
:
>>> f = fib(6)
>>> f
这里,最难理解的就是generator
和函数
的执行流程不一样。函数是顺序执行,遇到return
语句或者最后一行函数语句就返回。而变成generator
的函数,在每次调用next()
的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。
举个简单的例子,定义一个generator,依次返回数字1,3,5:
def odd():
print('step 1')
yield 1
print('step 2')
yield(3)
print('step 3')
yield(5)
调用该generator
时,首先要生成一个generator对象,然后用next()
函数不断获得下一个返回值:
>>> o = odd()
>>> next(o)
step 1
1
>>> next(o)
step 2
3
>>> next(o)
step 3
5
>>> next(o)
Traceback (most recent call last):
File "", line 1, in
StopIteration
可以看到,odd
不是普通函数,而是generator
,在执行过程中,遇到yield就中断,下次又继续执行。执行3次yield后,已经没有yield可以执行了,所以,第4次调用next(o)就报错。
回到fib的例子,我们在循环过程中不断调用yield,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。
同样的,把函数改成generator
后,我们基本上从来不会用next()
来获取下一个返回值,而是直接使用for循环来迭代:
>>> for n in fib(6):
... print(n)
...
1
1
2
3
5
8
但是用for
循环调用generator时,发现拿不到generator
的return
语句的返回值。如果想要拿到返回值,必须捕获StopIteration
错误,返回值包含在StopIteration
的value
中:
>>> g = fib(6)
>>> while True:
... try:
... x = next(g)
... print('g:', x)
... except StopIteration as e:
... print('Generator return value:', e.value)
... break
...
g: 1
g: 1
g: 2
g: 3
g: 5
g: 8
Generator return value: done
杨辉三角定义如下:
1
/ \
1 1
/ \ / \
1 2 1
/ \ / \ / \
1 3 3 1
/ \ / \ / \ / \
1 4 6 4 1
/ \ / \ / \ / \ / \
1 5 10 10 5 1
把每一行看做一个list,试写一个generator,不断输出下一行的list:
# -*- coding: utf-8 -*-
def triangles():
line = 1 # 行数
while line > 0:
nextlst = [0] * line # 动态数组
for i in range(line):
if i == 0 or i == line - 1:
nextlst[i] = 1
else:
nextlst[i] = prelst[i - 1] + prelst[i]
prelst = nextlst
yield nextlst
line = line + 1
n = 0
results = []
for t in triangles():
print(t)
results.append(t)
n = n + 1
if n == 10:
break
运行结果:
[1]
[1, 1]
[1, 2, 1]
[1, 3, 3, 1]
[1, 4, 6, 4, 1]
[1, 5, 10, 10, 5, 1]
[1, 6, 15, 20, 15, 6, 1]
[1, 7, 21, 35, 35, 21, 7, 1]
[1, 8, 28, 56, 70, 56, 28, 8, 1]
[1, 9, 36, 84, 126, 126, 84, 36, 9, 1]
小结
generator
是非常强大的工具,在Python中,可以简单地把列表生成式
改成generator
,也可以通过函数实现复杂逻辑的generator
。
要理解generator
的工作原理,它是在for
循环的过程中不断计算出下一个元素,并在适当的条件结束for
循环。对于函数改成的generator
来说,遇到return
语句或者执行到函数体最后一行语句,就是结束generator
的指令,for
循环随之结束。
小结
generator
是非常强大的工具,在Python
中,可以简单地把列表生成式
改成generator
,也可以通过函数实现复杂逻辑的generator
。
要理解generator
的工作原理,它是在for
循环的过程中不断计算出下一个元素,并在适当的条件结束for
循环。对于函数改成的generator
来说,遇到return
语句或者执行到函数体最后一行语句,就是结束generator
的指令,for
循环随之结束。
请注意区分普通函数
和generator
函数,普通函数调用直接返回结果:
>>> r = abs(6)
>>> r
6
generator函数的“调用”实际返回一个generator对象:
>>> g = fib(6)
>>> g
迭代器
我们已经知道,可以直接作用于for
循环的数据类型有以下几种:
一类是集合数据
类型,如list
、tuple
、dict
、set
、str
等;
一类是generator
,包括生成器
和带yield
的generator function。
这些可以直接作用于for
循环的对象统称为可迭代对象:Iterable
。
可以使用isinstance()
判断一个对象是否是Iterable
对象:
>>> from collections import Iterable
>>> isinstance([], Iterable)
True
>>> isinstance({}, Iterable)
True
>>> isinstance('abc', Iterable)
True
>>> isinstance((x for x in range(10)), Iterable)
True
>>> isinstance(100, Iterable)
False
而生成器
不但可以作用于for
循环,还可以被next()
函数不断调用并返回下一个值,直到最后抛出StopIteration
错误表示无法继续返回下一个值了。
可以被next()
函数调用并不断返回下一个值的对象称为迭代器:Iterator
。
可以使用isinstance()
判断一个对象是否是Iterato
r对象:
>>> from collections import Iterator
>>> isinstance((x for x in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance('abc', Iterator)
False
生成器都是Iterator
对象,但list
、dict
、str
虽然是Iterable
,却不是Iterator
。
把list
、dict
、str
等Iterable
变成Iterator
可以使用iter()
函数:
>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter('abc'), Iterator)
True
你可能会问,为什么list
、dict
、str
等数据类型不是Iterator
?
这是因为Python
的Iterator
对象表示的是一个数据流,Iterator
对象可以被next()
函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration
错误。可以把这个数据流看做是一个有序序列
,但我们却不能提前知道序列的长度,只能不断通过next()
函数实现按需计算下一个数据,所以Iterator
的计算是惰性的,只有在需要返回下一个数据时它才会计算。
Iterator
甚至可以表示一个无限大的数据流,例如全体自然数。而使用list
是永远不可能存储全体自然数的。
小结
凡是可作用于for
循环的对象都是Iterable
类型;
凡是可作用于next()
函数的对象都是Iterator
类型,它们表示一个惰性计算的序列;
集合数据类型如list
、dict
、str
等是Iterable
但不是Iterator
,不过可以通过iter()
函数获得一个Iterator
对象。
Python的for循环本质上就是通过不断调用next()
函数实现的,例如:
for x in [1, 2, 3, 4, 5]:
pass
实际上完全等价于:
# 首先获得Iterator对象:
it = iter([1, 2, 3, 4, 5])
# 循环:
while True:
try:
# 获得下一个值:
x = next(it)
except StopIteration:
# 遇到StopIteration就退出循环
break