高并发下的服务容错

在微服务架构中,我们将业务拆分成一个个的服务,服务与服务之间可以相互调用,但是由于网络 原因或者自身的原因,服务并不能保证服务的100%可用,如果单个服务出现问题,调用这个服务就会 出现网络延迟,此时若有大量的网络涌入,会形成任务堆积,最终导致服务瘫痪。

服务雪崩效应

在分布式系统中,由于网络原因或自身的原因,服务一般无法保证 100% 可用。如果一个服务出现了 问题,调用这个服务就会出现线程阻塞的情况,此时若有大量的请求涌入,就会出现多条线程阻塞等 待,进而导致服务瘫痪。

由于服务与服务之间的依赖性,故障会传播,会对整个微服务系统造成灾难性的严重后果,这就是 服务故障的 “雪崩效应” 。

高并发下的服务容错_第1张图片

雪崩发生的原因多种多样,有不合理的容量设计,或者是高并发下某一个方法响应变慢,亦或是某 台机器的资源耗尽。我们无法完全杜绝雪崩源头的发生,只有做好足够的容错,保证在一个服务发生问 题,不会影响到其它服务的正常运行。也就是"雪落而不雪崩"。 

常见容错方案

要防止雪崩的扩散,我们就要做好服务的容错,容错说白了就是保护自己不被猪队友拖垮的一些措 施, 下面介绍常见的服务容错思路和组件。

常见的容错思路

常见的容错思路有隔离、超时、限流、熔断、降级这几种,下面分别介绍一下。

隔离

它是指将系统按照一定的原则划分为若干个服务模块,各个模块之间相对独立,无强依赖。当有故 障发生时,能将问题和影响隔离在某个模块内部,而不扩散风险,不波及其它模块,不影响整体的 系统服务。常见的隔离方式有:线程池隔离和信号量隔离.

高并发下的服务容错_第2张图片

超时

在上游服务调用下游服务的时候,设置一个最大响应时间,如果超过这个时间,下游未作出反应, 就断开请求,释放掉线程。

 高并发下的服务容错_第3张图片

限流

限流就是限制系统的输入和输出流量已达到保护系统的目的。为了保证系统的稳固运行,一旦达到 的需要限制的阈值,就需要限制流量并采取少量措施以完成限制流量的目的。

高并发下的服务容错_第4张图片

 熔断

在互联网系统中,当下游服务因访问压力过大而响应变慢或失败,上游服务为了保护系统整 体的可用性,可以暂时切断对下游服务的调用。这种牺牲局部,保全整体的措施就叫做熔断。

高并发下的服务容错_第5张图片

服务熔断一般有三种状态: 熔断关闭状态(Closed) 服务没有故障时,熔断器所处的状态,对调用方的调用不做任何限制 熔断开启状态(Open) 后续对该服务接口的调用不再经过网络,直接执行本地的fallback方法 半熔断状态(Half-Open) 尝试恢复服务调用,允许有限的流量调用该服务,并监控调用成功率。如果成功率达到预 期,则说明服务已恢复,进入熔断关闭状态;如果成功率仍旧很低,则重新进入熔断关闭状 态。 

降级

降级其实就是为服务提供一个托底方案,一旦服务无法正常调用,就使用托底方案。

高并发下的服务容错_第6张图片

常见的容错组件

Hystrix

Hystrix是由Netflix开源的一个延迟和容错库,用于隔离访问远程系统、服务或者第三方库,防止 级联失败,从而提升系统的可用性与容错性。

Resilience4J

Resilicence4J一款非常轻量、简单,并且文档非常清晰、丰富的熔断工具,这也是Hystrix官方推 荐的替代产品。不仅如此,Resilicence4j还原生支持Spring Boot 1.x/2.x,而且监控也支持和

prometheus等多款主流产品进行整合。

Sentinel

Sentinel 是阿里巴巴开源的一款断路器实现,本身在阿里内部已经被大规模采用,非常稳定。

高并发下的服务容错_第7张图片

 

你可能感兴趣的:(springcloud,笔记)