C#,《数值算法:科学计算的艺术,Numerical Recipes: The Art of Scientific Computing》

代码的目录在下面!

C#,《数值算法:科学计算的艺术,Numerical Recipes: The Art of Scientific Computing》_第1张图片

《Numerical Recipes: The Art of Scientific Computing 3rd Edition》

C#,《数值算法:科学计算的艺术,Numerical Recipes: The Art of Scientific Computing》_第2张图片

William H. Press

C#,《数值算法:科学计算的艺术,Numerical Recipes: The Art of Scientific Computing》_第3张图片

Saul A. Teukolsky

C#,《数值算法:科学计算的艺术,Numerical Recipes: The Art of Scientific Computing》_第4张图片

William T. Vetterling

C#,《数值算法:科学计算的艺术,Numerical Recipes: The Art of Scientific Computing》_第5张图片

Brian P. Flannery

C#,《数值算法:科学计算的艺术,Numerical Recipes: The Art of Scientific Computing》_第6张图片

Numerical Recipes: The Art of Scientific Computing was first published in 1986 and became an instant classic among scientists, engineers, and social scientists. In this book the original, time-tested programs have been completely reworked into a clear, consistent Pascal style. This represents a significant improvement to the immensely successful programs contained in the first edition, which were originally written in Fortran. The authors make extensive use of pointers, dynamic memory allocation, and other features utilized by this language. The explanatory text accompanying the programs replicates the lucid, and easy-to-read prose found in the original version, and incorporates corrections, improvements, and explanations of special Pascal features. The product of a unique collaboration among four leading scientists in academic research and industry, Numerical Recipes in Pascal fills a long-recognized need for a practical, comprehensive handbook of scientific computing in the Pascal language. The book is designed both for the Pascal programmer who wants exposure to the techniques of scientific computing, and for the working scientist, social scientist, and engineer. The scope of the book ranges from standard areas of numerical analysis (linear algebra, differential equations, roots) through subjects useful to signal processing (Fourier methods, filtering), data analysis (least squares, robust fitting, statistical functions), simulation (random deviates and Monte Carlo), and more. The lively, informal text combined with an underlying degree of mathematical sophistic
 

GS BAIDU FANYI!

《数值算法,科学计算的艺术》于1986年首次出版,并迅速成为科学家、工程师和社会科学家的经典之作。在这本书中,经过时间测试的原始程序已完全重新编写成清晰、一致的Pascal风格。这代表着对第一批非常成功的项目的重大改进,第一版最初是用Fortran编写的。作者广泛使用了指针、动态内存分配和该语言使用的其他特性。程序附带的解释性文本复制了原始版本中清晰易读的散文,并包含了对Pascal特殊功能的更正、改进和解释。帕斯卡数字配方是四位学术研究和工业领域领先科学家之间独特合作的产物,它满足了人们长期以来对一本实用、全面的帕斯卡语言科学计算手册的需求。这本书是为希望接触科学计算技术的Pascal程序员设计的,也是为在职科学家、社会科学家和工程师设计的。这本书的范围从数值分析的标准领域(线性代数、微分方程、根)到对信号处理有用的主题(傅立叶方法、滤波)、数据分析(最小二乘法、稳健拟合、统计函数)、模拟(随机偏差和蒙特卡罗)等等。生动、非正式的文本结合了潜在的数学诡辩。

Co-authored by four leading scientists from academia and industry, Numerical Recipes Third Edition starts with basic mathematics and computer science and proceeds to complete, working routines. Widely recognized as the most comprehensive, accessible and practical basis for scientific computing, this new edition incorporates more than 400 Numerical Recipes routines, many of them new or upgraded. The executable C++ code, now printed in color for easy reading, adopts an object-oriented style particularly suited to scientific applications. The whole book is presented in the informal, easy-to-read style that made earlier editions so popular. Please visit www.nr.com or www.cambridge.org/us/numericalrecipes for more details. New key features: 2 new chapters, 25 new sections, 25% longer than Second Edition Thorough upgrades throughout the text Over 100 completely new routines and upgrades of many more. New Classification and Inference chapter, including Gaussian mixture models, HMMs, hierarchical clustering, Support Vector MachinesNew Computational Geometry chapter covers KD trees, quad- and octrees, Delaunay triangulation, and algorithms for lines, polygons, triangles, and spheres New sections include interior point methods for linear programming, Monte Carlo Markov Chains, spectral and pseudospectral methods for PDEs, and many new statistical distributions An expanded treatment of ODEs with completely new routines Plus comprehensive coverage of linear algebra, interpolation, special functions, random numbers, nonlinear sets of equations, optimization, eigensystems, Fourier methods and wavelets, statistical tests, ODEs and PDEs, integral equations, and inverse theory And much, much more! 

《数值算法,科学计算的艺术》第三版由学术界和工业界的四位顶尖科学家合著,从基础数学和计算机科学开始,然后继续完成日常工作。被公认为科学计算最全面、最易获取和最实用的基础,新版包含400多个数字配方例程,其中许多是新的或升级的。可执行的C++代码现在以彩色打印以便于阅读,它采用了一种面向对象的风格,特别适合于科学应用程序。整本书以非正式、易读的风格呈现,这使得早期版本如此流行。新的主要特点:2个新章节,25个新章节,比第二版长25%,在整个文本中彻底升级了100多个全新的例程和更多的升级。新的分类和推理章节,包括高斯混合模型、HMM、层次聚类、支持向量机新的计算几何章节涵盖KD树、四叉树和八叉树、Delaunay三角剖分以及直线、多边形、三角形和球体的算法新章节包括线性规划的内点方法、蒙特卡罗马尔可夫链、,偏微分方程的谱方法和伪谱方法,以及许多新的统计分布——对常微分方程的扩展处理,包括全新的例程,以及线性代数、插值、特殊函数、随机数、非线性方程组、优化、特征系统、傅立叶方法和小波、统计测试、常微分方程和偏微分方程、积分方程、,逆理论等等!

--------

《C++数值算法,Numrical Recipes in C++》

本书选材内容丰富,除了通常数值方法课程的内容外,还包含当代科学计算大量用到的专题,如求特殊函数值、随机数、排序、最优化、快速傅里叶变换、谱分析、小波变换、统计描述和数据建模、常微分方程和偏微分方程数值解、若干编码算法和任意精度的计算等。

本书科学性和实用性统一。每个专题中,不仅对每种算法给出了数学分析和比较,而且根据作者的经验对算法做出了评论和建议,并在此基础上给出了用C++语言编写的实用程序。读者可以很方便地直接套用这些程序,还可以结合特定的需要进行修改。本书中包含的345个程序构成了C++语言的数值计算程序库。

本书可以作为大学本科生和研究生的教材或参考书,也可以作为从事科学计算的科技工作者的工具书、计算机软件开发者的参考书。

-------

《C#数值算法,Numrical Recipes in C#》

敬请期待即将不断发布的 C# 版本的源代码。

包括:

---
实用程序
---\00 Utility Routines
---\00 Utility Routines\Calendar.cs
---\00 Utility Routines\Complex.cs
---\00 Utility Routines\Globals.cs
---\00 Utility Routines\Matrix.cs
---\00 Utility Routines\Matrix3d.cs
---\00 Utility Routines\RealMultiValueFun.cs
---\00 Utility Routines\RealValueFun.cs
---\00 Utility Routines\RealValueFunWithDiff.cs
---\00 Utility Routines\UniValRealValueFunWithDiff.cs
---\00 Utility Routines\UniVarRealMultiValueFun.cs
---\00 Utility Routines\UniVarRealValueFun.cs
---\00 Utility Routines\Vector.cs
线性代数方程组的求解
---\02 Solution of Linear Algebraic Equations
---\02 Solution of Linear Algebraic Equations\ADAT.cs
---\02 Solution of Linear Algebraic Equations\Bandec.cs
---\02 Solution of Linear Algebraic Equations\Cholesky.cs
---\02 Solution of Linear Algebraic Equations\GaussJordan.cs
---\02 Solution of Linear Algebraic Equations\Linbcg.cs
---\02 Solution of Linear Algebraic Equations\LUdcmp.cs
---\02 Solution of Linear Algebraic Equations\NRsparseCol.cs
---\02 Solution of Linear Algebraic Equations\NRsparseLinbcg.cs
---\02 Solution of Linear Algebraic Equations\NRsparseMat.cs
---\02 Solution of Linear Algebraic Equations\QRdcmp.cs
---\02 Solution of Linear Algebraic Equations\SVD.cs
---\02 Solution of Linear Algebraic Equations\Toeplz.cs
---\02 Solution of Linear Algebraic Equations\Tridag.cs
---\02 Solution of Linear Algebraic Equations\Vander.cs
插值和外推
---\03 Interpolation and Extrapolation
---\03 Interpolation and Extrapolation\BaryRat_interp.cs
---\03 Interpolation and Extrapolation\Base_interp.cs
---\03 Interpolation and Extrapolation\Bilin_interp.cs
---\03 Interpolation and Extrapolation\Curve_interp.cs
---\03 Interpolation and Extrapolation\Krig.cs
---\03 Interpolation and Extrapolation\Laplace_interp.cs
---\03 Interpolation and Extrapolation\Linear_interp.cs
---\03 Interpolation and Extrapolation\PolCoef.cs
---\03 Interpolation and Extrapolation\Poly2D_interp.cs
---\03 Interpolation and Extrapolation\Poly_interp.cs
---\03 Interpolation and Extrapolation\Powvargram.cs
---\03 Interpolation and Extrapolation\Rational_interp.cs
---\03 Interpolation and Extrapolation\RBF_fn.cs
---\03 Interpolation and Extrapolation\RBF_gauss.cs
---\03 Interpolation and Extrapolation\RBF_interp.cs
---\03 Interpolation and Extrapolation\RBF_inversemultiquadric.cs
---\03 Interpolation and Extrapolation\RBF_multiquadric.cs
---\03 Interpolation and Extrapolation\RBF_thinplate.cs
---\03 Interpolation and Extrapolation\Shep_interp.cs
---\03 Interpolation and Extrapolation\Spline2D_interp.cs
---\03 Interpolation and Extrapolation\Spline_interp.cs
积分
---\04 Integration of Functions
---\04 Integration of Functions\Adapt.cs
---\04 Integration of Functions\DErule.cs
---\04 Integration of Functions\GaussianWeights.cs
---\04 Integration of Functions\Midexp.cs
---\04 Integration of Functions\Midinf.cs
---\04 Integration of Functions\Midpnt.cs
---\04 Integration of Functions\Midsql.cs
---\04 Integration of Functions\Midsqu.cs
---\04 Integration of Functions\NRf1.cs
---\04 Integration of Functions\NRf2.cs
---\04 Integration of Functions\NRf3.cs
---\04 Integration of Functions\Quadrature.cs
---\04 Integration of Functions\Stiel.cs
---\04 Integration of Functions\Trapzd.cs
函数估值
---\05 Evaluation of Functions
---\05 Evaluation of Functions\Chebyshev.cs
---\05 Evaluation of Functions\Dfridr.cs
---\05 Evaluation of Functions\Epsalg.cs
---\05 Evaluation of Functions\Eulsum.cs
---\05 Evaluation of Functions\Levin.cs
---\05 Evaluation of Functions\Poly.cs
---\05 Evaluation of Functions\Ratfn.cs
特殊函数
---\06 Special Functions
---\06 Special Functions\Bessel.cs
---\06 Special Functions\Bessik.cs
---\06 Special Functions\Bessjy.cs
---\06 Special Functions\Beta.cs
---\06 Special Functions\Betadist.cs
---\06 Special Functions\Binomialdist.cs
---\06 Special Functions\Cauchydist.cs
---\06 Special Functions\Chisqdist.cs
---\06 Special Functions\Elliptic.cs
---\06 Special Functions\Erf.cs
---\06 Special Functions\Expondist.cs
---\06 Special Functions\Fdist.cs
---\06 Special Functions\Fermi.cs
---\06 Special Functions\Gamma.cs
---\06 Special Functions\Gammadist.cs
---\06 Special Functions\Gauleg18.cs
---\06 Special Functions\Hypergeo.cs
---\06 Special Functions\Integrals.cs
---\06 Special Functions\KSdist.cs
---\06 Special Functions\Legendre.cs
---\06 Special Functions\Logisticdist.cs
---\06 Special Functions\Lognormaldist.cs
---\06 Special Functions\Normaldist.cs
---\06 Special Functions\Poissondist.cs
---\06 Special Functions\Studenttdist.cs
随机数
---\07 Random Numbers
---\07 Random Numbers\Binomialdev.cs
---\07 Random Numbers\Cauchydev.cs
---\07 Random Numbers\Expondev.cs
---\07 Random Numbers\Gammadev.cs
---\07 Random Numbers\Hash.cs
---\07 Random Numbers\HashAll.cs
---\07 Random Numbers\Hashfn1.cs
---\07 Random Numbers\Hashfn2.cs
---\07 Random Numbers\Hashtable.cs
---\07 Random Numbers\Logisticdev.cs
---\07 Random Numbers\MCintegrate.cs
---\07 Random Numbers\Mhash.cs
---\07 Random Numbers\Miser.cs
---\07 Random Numbers\Multinormaldev.cs
---\07 Random Numbers\Normaldev.cs
---\07 Random Numbers\Normaldev_BM.cs
---\07 Random Numbers\Poissondev.cs
---\07 Random Numbers\Primpolytest.cs
---\07 Random Numbers\Ran.cs
---\07 Random Numbers\Ranbyte.cs
---\07 Random Numbers\Ranfib.cs
---\07 Random Numbers\Ranhash.cs
---\07 Random Numbers\Ranlim32.cs
---\07 Random Numbers\Ranq1.cs
---\07 Random Numbers\Ranq2.cs
---\07 Random Numbers\Sobol.cs
---\07 Random Numbers\VEGAS.cs
排序与选择
---\08 Sorting and Selection
---\08 Sorting and Selection\EClass.cs
---\08 Sorting and Selection\EquivalenceInf.cs
---\08 Sorting and Selection\Heapselect.cs
---\08 Sorting and Selection\Indexx.cs
---\08 Sorting and Selection\IQagent.cs
---\08 Sorting and Selection\Sorter.cs
非线性方程组
---\09 Root Finding and Nonlinear Sets of Equations
---\09 Root Finding and Nonlinear Sets of Equations\MNEWT.cs
---\09 Root Finding and Nonlinear Sets of Equations\NRfdjac.cs
---\09 Root Finding and Nonlinear Sets of Equations\NRfmin.cs
---\09 Root Finding and Nonlinear Sets of Equations\Roots.cs
极值问题
---\10 Minimization or Maximization of Functions
---\10 Minimization or Maximization of Functions\Amebsa.cs
---\10 Minimization or Maximization of Functions\Amoeba.cs
---\10 Minimization or Maximization of Functions\Anneal.cs
---\10 Minimization or Maximization of Functions\Bracketmethod.cs
---\10 Minimization or Maximization of Functions\Brent.cs
---\10 Minimization or Maximization of Functions\Dbrent.cs
---\10 Minimization or Maximization of Functions\Df1dim.cs
---\10 Minimization or Maximization of Functions\Dlinemethod.cs
---\10 Minimization or Maximization of Functions\Dynpro.cs
---\10 Minimization or Maximization of Functions\F1dim.cs
---\10 Minimization or Maximization of Functions\Frprmn.cs
---\10 Minimization or Maximization of Functions\Funcd.cs
---\10 Minimization or Maximization of Functions\Golden.cs
---\10 Minimization or Maximization of Functions\Linemethod.cs
---\10 Minimization or Maximization of Functions\Powell.cs
---\10 Minimization or Maximization of Functions\QuasiNewton.cs
---\10 Minimization or Maximization of Functions\StringAlign.cs
特征值与特征向量
---\11 Eigensystems
---\11 Eigensystems\Jacobi.cs
---\11 Eigensystems\Symmeig.cs
---\11 Eigensystems\Unsymmeig.cs
快速傅里叶变换
---\12 Fast Fourier Transform
---\12 Fast Fourier Transform\FFT.cs
---\12 Fast Fourier Transform\WrapVecDoub.cs
频谱理论
---\13 Fourier and Spectral Applications
---\13 Fourier and Spectral Applications\BartlettWin.cs
---\13 Fourier and Spectral Applications\Daub4.cs
---\13 Fourier and Spectral Applications\Daub4i.cs
---\13 Fourier and Spectral Applications\Daubs.cs
---\13 Fourier and Spectral Applications\DftInt.cs
---\13 Fourier and Spectral Applications\Fourier.cs
---\13 Fourier and Spectral Applications\Hann.cs
---\13 Fourier and Spectral Applications\Slepian.cs
---\13 Fourier and Spectral Applications\Slepwindow.cs
---\13 Fourier and Spectral Applications\Spectolap.cs
---\13 Fourier and Spectral Applications\Spectreg.cs
---\13 Fourier and Spectral Applications\SquareWin.cs
---\13 Fourier and Spectral Applications\Wavelet.cs
---\13 Fourier and Spectral Applications\WelchWin.cs
---\13 Fourier and Spectral Applications\WindowFun.cs
数理统计
---\14 Statistical Description of Data
---\14 Statistical Description of Data\Moment.cs
---\14 Statistical Description of Data\Quadvl.cs
---\14 Statistical Description of Data\QuadvlInf.cs
---\14 Statistical Description of Data\SavitzkyGolayFilter.cs
---\14 Statistical Description of Data\Stattests.cs
数据建模
---\15 Modeling of Data
---\15 Modeling of Data\FGauss.cs
---\15 Modeling of Data\Fitab.cs
---\15 Modeling of Data\Fitexy.cs
---\15 Modeling of Data\Fitlin.cs
---\15 Modeling of Data\Fitmed.cs
---\15 Modeling of Data\Fitmrq.cs
---\15 Modeling of Data\Fitsvd.cs
---\15 Modeling of Data\MultiFuncd.cs
---\15 Modeling of Data\Plog.cs
---\15 Modeling of Data\Proposal.cs
---\15 Modeling of Data\State.cs
分类和推理
---\16 Classification and Inference
---\16 Classification and Inference\Gaumixmod.cs
---\16 Classification and Inference\HMM.cs
---\16 Classification and Inference\Kmeans.cs
---\16 Classification and Inference\Phylagglom.cs
---\16 Classification and Inference\Phylagglomnode.cs
---\16 Classification and Inference\Phylo_clc.cs
---\16 Classification and Inference\Phylo_nj.cs
---\16 Classification and Inference\Phylo_slc.cs
---\16 Classification and Inference\Phylo_upgma.cs
---\16 Classification and Inference\Phylo_wpgma.cs
---\16 Classification and Inference\Svm.cs
---\16 Classification and Inference\Svmgausskernel.cs
---\16 Classification and Inference\Svmgenkernel.cs
---\16 Classification and Inference\Svmlinkernel.cs
---\16 Classification and Inference\Svmpolykernel.cs
常微分方程
---\17 Integration of Ordinary Differential Equations
---\17 Integration of Ordinary Differential Equations\DerivativeInf.cs
---\17 Integration of Ordinary Differential Equations\Hypderiv.cs
---\17 Integration of Ordinary Differential Equations\Odeint.cs
---\17 Integration of Ordinary Differential Equations\Output.cs
---\17 Integration of Ordinary Differential Equations\StepperBase.cs
---\17 Integration of Ordinary Differential Equations\StepperBS.cs
---\17 Integration of Ordinary Differential Equations\StepperDopr5.cs
---\17 Integration of Ordinary Differential Equations\StepperDopr853.cs
---\17 Integration of Ordinary Differential Equations\StepperRoss.cs
---\17 Integration of Ordinary Differential Equations\StepperSie.cs
---\17 Integration of Ordinary Differential Equations\StepperStoerm.cs
---\17 Integration of Ordinary Differential Equations\Stochsim.cs
两点边界问题
---\18 Two-Point Boundary Value Problems
---\18 Two-Point Boundary Value Problems\Difeq.cs
---\18 Two-Point Boundary Value Problems\Shoot.cs
---\18 Two-Point Boundary Value Problems\Shootf.cs
---\18 Two-Point Boundary Value Problems\Solvde.cs
---\19 Integral Equations and Inverse Theory
---\19 Integral Equations and Inverse Theory\Fred2.cs
---\19 Integral Equations and Inverse Theory\Quad_matrix.cs
---\19 Integral Equations and Inverse Theory\Volterra.cs
---\19 Integral Equations and Inverse Theory\Wwghts.cs
偏微分方程
---\20 Partial Differential Equations
---\20 Partial Differential Equations\Mgfas.cs
---\20 Partial Differential Equations\Mglin.cs
---\20 Partial Differential Equations\Relaxation.cs
---\20 Partial Differential Equations\Weights.cs
计算几何
---\21 Computational Geometry
---\21 Computational Geometry\Box.cs
---\21 Computational Geometry\Boxnode.cs
---\21 Computational Geometry\Circle.cs
---\21 Computational Geometry\Convexhull.cs
---\21 Computational Geometry\Delaunay.cs
---\21 Computational Geometry\KDtree.cs
---\21 Computational Geometry\Minspantree.cs
---\21 Computational Geometry\Nearpoints.cs
---\21 Computational Geometry\Point.cs
---\21 Computational Geometry\Polygon.cs
---\21 Computational Geometry\Qotree.cs
---\21 Computational Geometry\Sphcirc.cs
---\21 Computational Geometry\Triel.cs
---\21 Computational Geometry\Voronoi.cs
其他数值算法
---\22 Less-Numerical Algorithms
---\22 Less-Numerical Algorithms\Arithcode.cs
---\22 Less-Numerical Algorithms\Gray.cs
---\22 Less-Numerical Algorithms\Huffcode.cs
---\22 Less-Numerical Algorithms\Icrc.cs
---\22 Less-Numerical Algorithms\Machar.cs
---\22 Less-Numerical Algorithms\MParith.cs
实例
---\30 Example
---\30 Example\Bandec_Ex.cs
---\30 Example\Chebyshev_Ex.cs
---\30 Example\Cholesky_Ex.cs
---\30 Example\Cyclic_Ex.cs
---\30 Example\FFT_Ex.cs
---\30 Example\GaussJordan_Ex.cs
---\30 Example\Levin_Ex.cs
---\30 Example\LUdcmp_Ex.cs
---\30 Example\QRdcmp_Ex.cs
---\30 Example\Solvde_Ex.cs
---\30 Example\SVD_Ex.cs
---\30 Example\Toepltz_Ex.cs
---\30 Example\Trigag_Ex.cs
---\30 Example\Vander_Ex.cs
---\30 Example\Zrhqr_Ex.cs
---\30 Example\Zroots_Ex.cs
 

C#编程效率高,可交付商业软件而非python此等实验室程序,所以赚钱容易,又无名利需求,遂倾情奉献各种C#源代码和相关文件资料。

不仅给你代码,还有论文,甚至介绍作者,只有:比开源更开源的 TRUFFER!

你可能感兴趣的:(C#数值计算,Numerical,Recipes,C#算法演义,Algorithm,Recipes,数值计算,算法)