- 聚类分析 | Python密度聚类(DBSCAN)
天天酷科研
聚类分析算法(CLA)python聚类机器学习DBSCAN
密度聚类是一种无需预先指定聚类数量的聚类方法,它依赖于数据点之间的密度关系来自动识别聚类结构。本文中,演示如何使用密度聚类算法,具体是DBSCAN(Density-BasedSpatialClusteringofApplicationswithNoise)来对一个实际的数据集进行聚类分析。一、基本介绍密度聚类的核心思想是将数据点分为高密度区域和低密度区域。高密度区域内的数据点被认为属于同一簇,而低
- K近邻法(K-nearest neighbor,K-NN)—有监督学习方法、非概率模型、判别模型、线性模型、参数化模型、批量学习、核方法
剑海风云
ArtificialIntelligence人工智能机器学习K近邻法KNN
定义输入:训练数据集(T={(x1,y1),(x2,y2),…,(xN,yN)}\left\{(x_1,y_1),(x_2,y_2),\dots,(x_N,y_N)\right\}{(x1,y1),(x2,y2),…,(xN,yN)})其中:xi∈χ⊆Rnx_i\in{\tt\chi}\subseteqR^nxi∈χ⊆Rn:实例的特征向量yi∈yy_i\in{\tty}yi∈y={c1,c2,⋯
- Vicky的ScalersTalk第六轮新概念朗读持续力训练Day50 20210319
Vicky_b9de
练习材料:AlostshipPart-1一艘沉船Thesalvageoperationhadbeenacompletefailure.Thesmallship,Elkor,whichhadbeensearchingtheBarentsSeaforweeks,wasonitswayhome.Aradiomessagefromthemainlandhadbeenreceivedbytheship'sc
- 【车辆轨迹处理】python实现轨迹点的聚类(一)——DBSCAN算法
空之箱大战春日影
车辆轨迹数据处理算法python聚类
文章目录前言一、单辆车轨迹的聚类与分析1.引入库2.聚类3.聚类评价二、整个数据集多辆车聚类1.聚类2.整体评价前言 空间聚类是基于一定的相似性度量对空间大数据集进行分组的过程。空间聚类分析是一种无监督形式的机器学习。通过空间聚类可以从空间数据集中发现隐含的信息。 作者在科研工作中,需要对某些车辆的轨迹数据进行一些空间聚类分析,以期望发现车辆在行驶过程中发生轨迹点”聚集“的行为。当等时间间隔的
- 机器学习:DBSCAN算法(内有精彩动图)
吃什么芹菜卷
机器学习机器学习算法人工智能
目录前言一、DBSCAN算法1.动图展示(图片转载自网络)2.步骤详解3.参数配置二、代码实现1.完整代码2.代码详解1.导入数据2.通过循环确定参数最佳值总结前言DBSCAN(Density-BasedSpatialClusteringofApplicationswithNoise)是一种基于密度的聚类算法。它可以发现任意形状的簇并能够处理噪声数据。一、DBSCAN算法1.动图展示(图片转载自网
- 学习笔记1 三大聚类方法:K-means聚类、层次聚类、DBSCAN聚类
泠泠风来
聚类matlab
学习笔记1:三大聚类方法:K-means聚类、层次聚类、DBSCAN聚类文章目录前言一、K-means聚类操作过程二、层次聚类操作过程三、DBSCAN聚类操作过程总结前言在样本数量较多的情况下,可以通过聚类将样本划分为多个类,对每个类中单独使用模型进行分析和相关运算,亦可以探究不同类之间的相关性和主要差异。例如MathorCup2022年D题此外,可以借助https://www.naftaliha
- clickhouse-neighbor 坑爹的排序
[email protected]
clickhouse
对于排序规则明显的数据集,使用neighbor来做分析,是一个非常强大的函数,能完成很多复杂的计算,例如高速公路分析车辆流量。高速公路截面流量一般是通过路面上的门架采集设备采集通行卡的信息和识别牌照组成,在路面行驶的车辆,受天气、车辆密集度、电子卡片、采集设备等因素影响,也不能100%准确采集到通行数据,如果仅仅以单一采集点来分析流量,准确度必然打折扣。不过,任何方法都不能说完全准确分析出数据,肯
- NDP(Neighbor Discovery Protocol)简介
周工不想解梦
网络网络协议tcp/ip
定义邻居发现协议NDP(NeighborDiscoveryProtocol)是IPv6协议体系中一个重要的基础协议。邻居发现协议替代了IPv4的ARP(AddressResolutionProtocol)和ICMP路由设备发现(RouterDiscovery),它定义了使用ICMPv6报文实现路由设备发现、重复地址检测、地址解析、邻居不可达检测NUD(NeighborUnreachabilityD
- 北海的ScalersTalk第六轮新概念朗读持续力训练Day 78 20210319
北海逍遙
练习材料L32-1:Alostship/ə//lɒst//ʃɪpThesalvageoperationhadbeenacompletefailure.The/ðə//ˈsælvɪʤ//ˌɒpəˈreɪʃən//hæd//biːn//ə//kəmˈpliːt//ˈfeɪljə.//ðiː/smallship,Elkor,whichhadbeensearchingtheBarentsSea/smɔːl
- 论文阅读笔记《SimpleShot: Revisiting Nearest-Neighbor Classification for Few-Shot Learning》
深视
论文阅读笔记#小样本学习深度学习小样本学习
小样本学习&元学习经典论文整理||持续更新核心思想 本文提出一种基于最近邻方法的小样本学习算法(SimpleShot),作者指出目前大量的小样本学习算法都采用了元学习的方案,而作者却发现使用简单的特征提取器+最近邻分类器的方法就能实现非常优异的小样本分类效果。本文首先用特征提取网络fθf_{\theta}fθ+线性分类器在一个基础数据集上对网络进行训练,将训练得到的特征提取网络增加一个简单的特征
- SimpleShot: Revisiting Nearest-Neighbor Classification for Few-Shot Learning 论文笔记
头柱碳只狼
小样本学习
前言目前大多数小样本学习器首先使用一个卷积网络提取图像特征,然后将元学习方法与最近邻分类器结合起来,以进行图像识别。本文探讨了这样一种可能性,即在不使用元学习方法,而仅使用最近邻分类器的情况下,能否很好地处理小样本学习问题。本文发现,对图像特征进行简单的特征转换,然后再进行最近邻分类,也可以产生很好的小样本学习结果。比如,使用DenseNet特征的最近邻分类器,在结合均值相减(meansubtra
- BBC 新闻:2020年10月30日,土耳其西部发生强烈地震,导致20栋建筑物倒塌
Lisa_Wang_China
MorepeoplehavebeenpulledaliveovernightfromtherubbleintheTurkishcityofIzmir,whereapowerfulearthquakecaused20buildingstocollapse.Rescueteamsarestillsearchingunderconcreteslabs,despitethedangerfromhundre
- OLMO:Accelerating the Science of Language Models
UnknownBody
LLM语言模型人工智能自然语言处理
本文是LLM系列文章,针对《AcceleratingtheScienceofLanguageModels》的翻译。加速语言模型科学摘要1引言2OLMO框架3训练OLMO4结果5已发布的工作6许可7结论和未来工作摘要语言模型(LMs)已经在NLP研究和商业产品中无处不在。随着其商业重要性的激增,最强大的模型已经被封闭,被封闭在专有接口后面,其训练数据、架构和开发的重要细节尚未公开。鉴于这些细节在科学
- OLMo 以促进语言模型科学之名 —— OLMo Accelerating the Science of Language Models —— 全文翻译
Eloudy
人工智能语言模型干法自然语言处理
OLMo:AcceleratingtheScienceofLanguageModelsOLMo以促进语言模型科学之名摘要语言模型在自然语言处理的研究中和商业产品中已经变得无所不在。因为其商业上的重要性激增,所以,其中最强大的模型已经闭源,控制在专有接口之中,保持特别是训练数据、架构和开发的重要的细节秘而不宣。考虑到科学地研究这些模型的细节的重要性,包括他们的偏见和潜在风险,我们坚信能够把玩强大的、
- 【PyTorch][chapter 16][李宏毅深度学习][Neighbor Embedding][t-SNE]
明朝百晓生
深度学习pytorchembedding
前言:前面LLE讲了两个点在高维空间距离相近,通过降维后也要保持这种关系但是如果两个点在高维空间距离很远(不属于K邻近),降维后有可能叠加在一起了.t-SNE(t-DistributedStochasticNeighborEmbedding)是一种降维技术,LLE在进行降维时,都强调了降维后的相似的数据要尽可能地保持相似,但并没有说对于那些不相似的数据,要有多不相似这个问题.这就导致了在进行降维时
- 多元统计分析课程论文-聚类效果评价
talle2021
数据分析机器学习聚类数据挖掘机器学习
数据集来源:UnsupervisedLearningonCountryData(kaggle.com)代码参考:Clustering:PCA|K-Means-DBSCAN-Hierarchical||Kaggle基于特征合成降维和主成分分析法降维的国家数据集聚类效果评价目录1.特征合成降维2.PCA降维3.K-Means聚类3.1对特征合成降维的数据聚类分析3.2对PCA降维的数据聚类分析摘要:本
- c++下使用Open3D进行DBSCAN聚类
Patient patient.
聚类c++DBSCANOpen3d
c++下使用Open3D进行DBSCAN聚类#include#include#includeusingnamespaceopen3d;usingnamespacestd;intmain(intargc,char*argv[]){//读取点云std::shared_ptrcloud(newgeometry::PointCloud);open3d::io::ReadPointCloud("C:/Use
- Open3d dbscan聚类算法cluster_dbscan
mm_exploration
python+Open3dpythonopen3d
目录一、dbscan聚类算法介绍二、cluster_dbscan函数解析三、代码实现一、dbscan聚类算法介绍下面这篇文章介绍的非常详细,如果有兴趣消息了解算法的,可以移步到这里:https://blog.csdn.net/weixin_50514171/article/details/127195711dbscan是一种基于密度的聚类算法,根据点周围的密度,将点进行聚类划分。几个概念(半径ep
- open3d 点云聚类dbscan
Mr.Q
open3d聚类python
关键代码:labels=np.array(pcd.cluster_dbscan(eps=0.02,min_points=10,print_progress=True))point_cloud_dbscan_clustering.pyimportopen3daso3dimportnumpyasnpimportmatplotlib.pyplotaspltif__name__=="__main__":#
- open3d DBSCAN 聚类
云杂项
open3d持续更新聚类计算机视觉3d算法python
DBSCAN聚类一、算法原理1.密度聚类2、主要函数二、代码三、结果四、相关数据一、算法原理1.密度聚类介绍基于密度的噪声应用空间聚类(DBSCAN):是一种无监督的ML聚类算法。无监督的意思是它不使用预先标记的目标来聚类数据点。聚类是指试图将相似的数据点分组到人工确定的组或簇中。另一方面,DBSCAN不要求我们指定集群的数量,避免了异常值,并且在任意形状和大小的集群中工作得非常好。它没有质心,聚
- 电影|《网络迷踪》之看人
栋鸿
看片原因:叙事手法为黑客视角(屏幕上对应着演员的电脑屏幕,全程是操作者在浏览电脑上的视频、社交软件、图片),觉得挺新奇的。《网络迷踪》这个名字实在不好,英文的SEARCHING更能体现查找文件、人肉搜索、找女儿、找凶手四层含义,找是全故事的线索,在寻找真相。SEARCHING只是看完,剧情其实没觉得多惊奇,bug太多,不如《完美陌生人》《消失的客人》。但父亲不了解女儿,这在亲密关系中还是可以引发思
- 【BFS】 773. 滑动谜题
少写代码少看论文多多睡觉
#Leetcode宽度优先算法
773.滑动谜题解题思路首先定义了一个slidingPuzzle方法,接收一个二维数组board作为参数,表示初始的拼图板状态,然后返回一个整数表示移动到目标状态所需的最小步数。初始化了一个二维数组neighbor,用于记录每个数字在一维字符串中的相邻索引,这是为了在移动数字时判断合法性。创建了一个队列q和一个哈希集visited。队列用于广度优先搜索(BFS)时存储待处理的拼图板状态,哈希集用于
- 老爸老妈浪漫史How I Met Your Mother第1季第7集台词
kuailexuewaiyu
英文中文DramaName:howimetyourmotherSeason1Episode07Kids,beforeImetyourmother,孩子们,在我遇见你们妈妈前whenIwasstillouttheresearching,当我仍然在寻找我的另一半时Ilearnedsomethingvaluable.我学到了一点Thatloveisnotascience.那就是爱情不是科学Wow,tha
- 2020-12-11 szh
乐呵_929a
QUESTION1:Whatdoesthissectionsay?Withenoughconfidenceandcourage,afteraperiodofsearching,Hawfoundanewcheesestation-stationN.Hemetoncemousefriendshere,andhefeltsincereadmirationforwhattheyhaddone.Immers
- 【Matlab】聚类方法_基于DBSCAN的密度聚类
敲代码两年半的练习生
聚类matlab
【Matlab】聚类方法_基于DBSCAN的密度聚类1.基本思想2.数据集介绍3.文件结构4.详细代码及注释5.运行结果1.基本思想基于DBSCAN的密度聚类的基本思想是:对于任意一个点,如果在它的ε-邻域(ε-Neighborhood)内至少有MinPts个点,那么这些点就可以被划分到同一个簇中。其中,ε是半径,MinPts是最小点数。DBSCAN算法将数据点分为三类:核心点、边界点和噪声点。核
- 159基于matlab的基于密度的噪声应用空间聚类(DBSCAN)算法对点进行聚类
顶呱呱程序
matlab工程应用算法matlab聚类无监督学习基于密度的噪声应用空间聚类
基于matlab的基于密度的噪声应用空间聚类(DBSCAN)算法对点进行聚类,聚类结果效果好,DBSCAN不要求我们指定集群的数量,避免了异常值,并且在任意形状和大小的集群中工作得非常好。它没有质心,聚类簇是通过将相邻的点连接在一起的过程形成的。优于kmeans。程序已调通,可直接运行。159基于密度的噪声应用空间聚类无监督学习(xiaohongshu.com)
- 解决K2 Secondary domain users not found when searching
十月生来万物生
问题描述:在K2ManagementSite中对secondarydomain的user进行搜索,搜索不到任何结果。现象:参考K2官方文档添加secondarydomain,但是再配置完成后通过如下SQL语句查看DB中的数据实例并没有被更新。SELECT[RoleInit]FROM[HostServer].[SecurityLabel]WHERE[SecurityLabelName]='K2'查询
- 李宏毅机器学习(二十)无监督学习Neighbor Embedding近邻嵌入
ca8519be679b
ManifoldLearning我们有时候的特征其实是低维度的放到高纬度上去,比如地球表面是2维的,但是被放到了3维空间,比如左下的S曲面,其实可以展开到2维平面上去,接下来就方便我们进一步计算分类等等插图1我们有如下几个降维方法LocallyLinearEmedding(LLE)局部线性嵌入具体是是怎么做的呢,我们点x和周围的点xj,给xj每个点加权wij求和,使其和xi最接近,然后投影到向量z
- 【PyTorch][chapter 15][李宏毅深度学习][Neighbor Embedding-LLE]
明朝百晓生
深度学习pytorchembedding
前言:前面讲的都是线性降维,本篇主要讨论一下非线性降维.流形学习(mainfoldlearning)是一类借鉴了拓扑流行概念的降维方法.如上图,欧式距离上面A点跟C点更近,距离B点较远但是从图形拓扑结构来看,B点跟A点更近目录:LLE简介高维线性重构低维投影Python例子一局部线性嵌入(LLELocallyLinearEmbedding)局部线性嵌入(LocallyLinearEmbedding
- OSDI 2023: Userspace Bypass Accelerating Syscall-intensive Applications
结构化文摘
操作系统用户态内核硬件兼容分层架构存储结构
我们使用以下6个分类标准对本文的研究选题进行分析:1.方法:**系统调用消除:**专注于完全消除I/O路径中的系统调用(例如DPDK、UserspaceBypass)。**系统调用优化:**在不完全消除的情况下,旨在降低系统调用的成本(例如io_uring、F-Stack)。**替代执行模型:**探索使用用户空间或微内核等不同执行环境来绕过系统调用(例如QEMU、Unikernels)。2.应用重
- 强大的销售团队背后 竟然是大数据分析的身影
蓝儿唯美
数据分析
Mark Roberge是HubSpot的首席财务官,在招聘销售职位时使用了大量数据分析。但是科技并没有挤走直觉。
大家都知道数理学家实际上已经渗透到了各行各业。这些热衷数据的人们通过处理数据理解商业流程的各个方面,以重组弱点,增强优势。
Mark Roberge是美国HubSpot公司的首席财务官,HubSpot公司在构架集客营销现象方面出过一份力——因此他也是一位数理学家。他使用数据分析
- Haproxy+Keepalived高可用双机单活
bylijinnan
负载均衡keepalivedhaproxy高可用
我们的应用MyApp不支持集群,但要求双机单活(两台机器:master和slave):
1.正常情况下,只有master启动MyApp并提供服务
2.当master发生故障时,slave自动启动本机的MyApp,同时虚拟IP漂移至slave,保持对外提供服务的IP和端口不变
F5据说也能满足上面的需求,但F5的通常用法都是双机双活,单活的话还没研究过
服务器资源
10.7
- eclipse编辑器中文乱码问题解决
0624chenhong
eclipse乱码
使用Eclipse编辑文件经常出现中文乱码或者文件中有中文不能保存的问题,Eclipse提供了灵活的设置文件编码格式的选项,我们可以通过设置编码 格式解决乱码问题。在Eclipse可以从几个层面设置编码格式:Workspace、Project、Content Type、File
本文以Eclipse 3.3(英文)为例加以说明:
1. 设置Workspace的编码格式:
Windows-&g
- 基础篇--resources资源
不懂事的小屁孩
android
最近一直在做java开发,偶尔敲点android代码,突然发现有些基础给忘记了,今天用半天时间温顾一下resources的资源。
String.xml 字符串资源 涉及国际化问题
http://www.2cto.com/kf/201302/190394.html
string-array
- 接上篇补上window平台自动上传证书文件的批处理问卷
酷的飞上天空
window
@echo off
: host=服务器证书域名或ip,需要和部署时服务器的域名或ip一致 ou=公司名称, o=公司名称
set host=localhost
set ou=localhost
set o=localhost
set password=123456
set validity=3650
set salias=s
- 企业物联网大潮涌动:如何做好准备?
蓝儿唯美
企业
物联网的可能性也许是无限的。要找出架构师可以做好准备的领域然后利用日益连接的世界。
尽管物联网(IoT)还很新,企业架构师现在也应该为一个连接更加紧密的未来做好计划,而不是跟上闸门被打开后的集成挑战。“问题不在于物联网正在进入哪些领域,而是哪些地方物联网没有在企业推进,” Gartner研究总监Mike Walker说。
Gartner预测到2020年物联网设备安装量将达260亿,这些设备在全
- spring学习——数据库(mybatis持久化框架配置)
a-john
mybatis
Spring提供了一组数据访问框架,集成了多种数据访问技术。无论是JDBC,iBATIS(mybatis)还是Hibernate,Spring都能够帮助消除持久化代码中单调枯燥的数据访问逻辑。可以依赖Spring来处理底层的数据访问。
mybatis是一种Spring持久化框架,要使用mybatis,就要做好相应的配置:
1,配置数据源。有很多数据源可以选择,如:DBCP,JDBC,aliba
- Java静态代理、动态代理实例
aijuans
Java静态代理
采用Java代理模式,代理类通过调用委托类对象的方法,来提供特定的服务。委托类需要实现一个业务接口,代理类返回委托类的实例接口对象。
按照代理类的创建时期,可以分为:静态代理和动态代理。
所谓静态代理: 指程序员创建好代理类,编译时直接生成代理类的字节码文件。
所谓动态代理: 在程序运行时,通过反射机制动态生成代理类。
一、静态代理类实例:
1、Serivce.ja
- Struts1与Struts2的12点区别
asia007
Struts1与Struts2
1) 在Action实现类方面的对比:Struts 1要求Action类继承一个抽象基类;Struts 1的一个具体问题是使用抽象类编程而不是接口。Struts 2 Action类可以实现一个Action接口,也可以实现其他接口,使可选和定制的服务成为可能。Struts 2提供一个ActionSupport基类去实现常用的接口。即使Action接口不是必须实现的,只有一个包含execute方法的P
- 初学者要多看看帮助文档 不要用js来写Jquery的代码
百合不是茶
jqueryjs
解析json数据的时候需要将解析的数据写到文本框中, 出现了用js来写Jquery代码的问题;
1, JQuery的赋值 有问题
代码如下: data.username 表示的是: 网易
$("#use
- 经理怎么和员工搞好关系和信任
bijian1013
团队项目管理管理
产品经理应该有坚实的专业基础,这里的基础包括产品方向和产品策略的把握,包括设计,也包括对技术的理解和见识,对运营和市场的敏感,以及良好的沟通和协作能力。换言之,既然是产品经理,整个产品的方方面面都应该能摸得出门道。这也不懂那也不懂,如何让人信服?如何让自己懂?就是不断学习,不仅仅从书本中,更从平时和各种角色的沟通
- 如何为rich:tree不同类型节点设置右键菜单
sunjing
contextMenutreeRichfaces
组合使用target和targetSelector就可以啦,如下: <rich:tree id="ruleTree" value="#{treeAction.ruleTree}" var="node" nodeType="#{node.type}"
selectionChangeListener=&qu
- 【Redis二】Redis2.8.17搭建主从复制环境
bit1129
redis
开始使用Redis2.8.17
Redis第一篇在Redis2.4.5上搭建主从复制环境,对它的主从复制的工作机制,真正的惊呆了。不知道Redis2.8.17的主从复制机制是怎样的,Redis到了2.4.5这个版本,主从复制还做成那样,Impossible is nothing! 本篇把主从复制环境再搭一遍看看效果,这次在Unbuntu上用官方支持的版本。 Ubuntu上安装Red
- JSONObject转换JSON--将Date转换为指定格式
白糖_
JSONObject
项目中,经常会用JSONObject插件将JavaBean或List<JavaBean>转换为JSON格式的字符串,而JavaBean的属性有时候会有java.util.Date这个类型的时间对象,这时JSONObject默认会将Date属性转换成这样的格式:
{"nanos":0,"time":-27076233600000,
- JavaScript语言精粹读书笔记
braveCS
JavaScript
【经典用法】:
//①定义新方法
Function .prototype.method=function(name, func){
this.prototype[name]=func;
return this;
}
//②给Object增加一个create方法,这个方法创建一个使用原对
- 编程之美-找符合条件的整数 用字符串来表示大整数避免溢出
bylijinnan
编程之美
import java.util.LinkedList;
public class FindInteger {
/**
* 编程之美 找符合条件的整数 用字符串来表示大整数避免溢出
* 题目:任意给定一个正整数N,求一个最小的正整数M(M>1),使得N*M的十进制表示形式里只含有1和0
*
* 假设当前正在搜索由0,1组成的K位十进制数
- 读书笔记
chengxuyuancsdn
读书笔记
1、Struts访问资源
2、把静态参数传递给一个动作
3、<result>type属性
4、s:iterator、s:if c:forEach
5、StringBuilder和StringBuffer
6、spring配置拦截器
1、访问资源
(1)通过ServletActionContext对象和实现ServletContextAware,ServletReque
- [通讯与电力]光网城市建设的一些问题
comsci
问题
信号防护的问题,前面已经说过了,这里要说光网交换机与市电保障的关系
我们过去用的ADSL线路,因为是电话线,在小区和街道电力中断的情况下,只要在家里用笔记本电脑+蓄电池,连接ADSL,同样可以上网........
 
- oracle 空间RESUMABLE
daizj
oracle空间不足RESUMABLE错误挂起
空间RESUMABLE操作 转
Oracle从9i开始引入这个功能,当出现空间不足等相关的错误时,Oracle可以不是马上返回错误信息,并回滚当前的操作,而是将操作挂起,直到挂起时间超过RESUMABLE TIMEOUT,或者空间不足的错误被解决。
这一篇简单介绍空间RESUMABLE的例子。
第一次碰到这个特性是在一次安装9i数据库的过程中,在利用D
- 重构第一次写的线程池
dieslrae
线程池 python
最近没有什么学习欲望,修改之前的线程池的计划一直搁置,这几天比较闲,还是做了一次重构,由之前的2个类拆分为现在的4个类.
1、首先是工作线程类:TaskThread,此类为一个工作线程,用于完成一个工作任务,提供等待(wait),继续(proceed),绑定任务(bindTask)等方法
#!/usr/bin/env python
# -*- coding:utf8 -*-
- C语言学习六指针
dcj3sjt126com
c
初识指针,简单示例程序:
/*
指针就是地址,地址就是指针
地址就是内存单元的编号
指针变量是存放地址的变量
指针和指针变量是两个不同的概念
但是要注意: 通常我们叙述时会把指针变量简称为指针,实际它们含义并不一样
*/
# include <stdio.h>
int main(void)
{
int * p; // p是变量的名字, int *
- yii2 beforeSave afterSave beforeDelete
dcj3sjt126com
delete
public function afterSave($insert, $changedAttributes)
{
parent::afterSave($insert, $changedAttributes);
if($insert) {
//这里是新增数据
} else {
//这里是更新数据
}
}
 
- timertask
shuizhaosi888
timertask
java.util.Timer timer = new java.util.Timer(true);
// true 说明这个timer以daemon方式运行(优先级低,
// 程序结束timer也自动结束),注意,javax.swing
// 包中也有一个Timer类,如果import中用到swing包,
// 要注意名字的冲突。
TimerTask task = new
- Spring Security(13)——session管理
234390216
sessionSpring Security攻击保护超时
session管理
目录
1.1 检测session超时
1.2 concurrency-control
1.3 session 固定攻击保护
 
- 公司项目NODEJS实践0.3[ mongo / session ...]
逐行分析JS源代码
mongodbsessionnodejs
http://www.upopen.cn
一、前言
书接上回,我们搭建了WEB服务端路由、模板等功能,完成了register 通过ajax与后端的通信,今天主要完成数据与mongodb的存取,实现注册 / 登录 /
- pojo.vo.po.domain区别
LiaoJuncai
javaVOPOJOjavabeandomain
POJO = "Plain Old Java Object",是MartinFowler等发明的一个术语,用来表示普通的Java对象,不是JavaBean, EntityBean 或者 SessionBean。POJO不但当任何特殊的角色,也不实现任何特殊的Java框架的接口如,EJB, JDBC等等。
即POJO是一个简单的普通的Java对象,它包含业务逻辑
- Windows Error Code
OhMyCC
windows
0 操作成功完成.
1 功能错误.
2 系统找不到指定的文件.
3 系统找不到指定的路径.
4 系统无法打开文件.
5 拒绝访问.
6 句柄无效.
7 存储控制块被损坏.
8 存储空间不足, 无法处理此命令.
9 存储控制块地址无效.
10 环境错误.
11 试图加载格式错误的程序.
12 访问码无效.
13 数据无效.
14 存储器不足, 无法完成此操作.
15 系
- 在storm集群环境下发布Topology
roadrunners
集群stormtopologyspoutbolt
storm的topology设计和开发就略过了。本章主要来说说如何在storm的集群环境中,通过storm的管理命令来发布和管理集群中的topology。
1、打包
打包插件是使用maven提供的maven-shade-plugin,详细见maven-shade-plugin。
<plugin>
<groupId>org.apache.maven.
- 为什么不允许代码里出现“魔数”
tomcat_oracle
java
在一个新项目中,我最先做的事情之一,就是建立使用诸如Checkstyle和Findbugs之类工具的准则。目的是制定一些代码规范,以及避免通过静态代码分析就能够检测到的bug。 迟早会有人给出案例说这样太离谱了。其中的一个案例是Checkstyle的魔数检查。它会对任何没有定义常量就使用的数字字面量给出警告,除了-1、0、1和2。 很多开发者在这个检查方面都有问题,这可以从结果
- zoj 3511 Cake Robbery(线段树)
阿尔萨斯
线段树
题目链接:zoj 3511 Cake Robbery
题目大意:就是有一个N边形的蛋糕,切M刀,从中挑选一块边数最多的,保证没有两条边重叠。
解题思路:有多少个顶点即为有多少条边,所以直接按照切刀切掉点的个数排序,然后用线段树维护剩下的还有哪些点。
#include <cstdio>
#include <cstring>
#include <vector&