- Transformer大模型实战 BART模型的架构
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Transformer大模型实战BART模型的架构作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming/TextGenWebUILLMTransformer大模型实战BART模型的架构1.背景介绍1.1问题的由来随着大规模预训练模型的兴起,如BERT、GPT系列等,研究人员发现基于Transformer架构的模型在自然语言处理任务上表现出了显著的优势。为
- 【大模型应用开发 动手做AI Agent】Agent的各种记忆机制
AI天才研究院
AI大模型企业级应用开发实战大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍AIAgent的核心特点是能够自主地与环境进行交互,以实现某种目标。为了实现这一目标,Agent需要对环境进行感知和理解,并对其进行探索和利用。对于Agent来说,记忆是实现这些功能的关键。Agent的记忆可以分为两类:短期记忆和长期记忆。短期记忆用于存储暂时性的信息,而长期记忆用于存储永久性的信息。以下是Agent的各种记忆机制的详细解释。2.核心概念与联系Agent的记忆机制可以分
- 吴恩达《提示词工程》(Prompt Engineering for Developers)课程详细笔记
拾工
人工智能prompt笔记人工智能
课程简介目标:帮助开发者理解如何有效地使用大语言模型(LLMs),提升通过提示词解决问题的能力。适用对象:开发者、AI从业者、产品经理等,希望通过提示词优化生成模型性能的人。第1章:提示词工程基础1.什么是提示词工程提示词工程是一种优化与大语言模型(如GPT)交互的技术,旨在通过设计有效的提示词(prompts)引导模型生成所需的输出。主要思想:用正确的方式提问以得到最佳答案。2.提示词的组成指令
- Python中的23种设计模式:详细分类与总结
拾工
Python设计模式软件设计设计模式
设计模式是解决特定问题的通用方法,分为创建型模式、结构型模式和行为型模式三大类。以下是对每种模式的详细介绍,包括其核心思想、应用场景和优缺点。一、创建型模式(CreationalPatterns)创建型模式关注对象的创建,旨在解耦对象的创建过程,提高灵活性和可扩展性。1.单例模式(Singleton)核心思想:确保一个类只有一个实例,并提供全局访问点。应用场景:数据库连接、配置管理器、日志记录器。
- Python批量为PDF添加水印:让你的文件瞬间高大上!
码无止尽
Python办公自动化pythonpdf
嗨,各位可爱的小伙伴们!小编在此奉上今天的超级干货:如何用Python给一大堆PDF文件添加水印。请放心,这不是在交朋友圈秀操作,而是有实际需求的哦!有时候我们需要在PDF文件上添加水印,比如“草稿”、“保密”、“审阅”等标识,来提醒自己或他人。今天就让我来教你如何用Python轻松搞定这件事!首先,让我给你看一下大致的实现思路,然后再附上实际代码。实现思路1、首先,我们需要一个PDF处理的Pyt
- 视频编码(结构、帧内预测、帧间预测)参考自公众号Video Coding
Techer_Y
音视频视频编解码h.265
编码结构H.265/HEVC(高效视频编码)提出了编码树单元CTU(CodingTreeUnit),CTU按四叉树方式向下划分成CU(CodingUnit)。VCC允许的最大CTU尺寸为128*128。H.265中,CU最大尺寸为64*64,最小尺寸为8*8。对平坦区域使用大尺寸CU,纹理复杂区域使用小尺寸CU可以大大提高编码效率。四叉树深度越大CU尺寸越小。多类型树划分:按照水平/垂直来进行二叉
- 开源生态发展合作倡议
操作系统
在信息技术发展的浪潮中,开源已成为全球创新的强劲引擎,深刻影响着各行各业的发展。今天,我们站在新的历史起点上,肩负着推动开源生态发展的重任。在此,开源欧拉(openEuler)、龙蜥(OpenAnolis)、鸥栖(OpenCloudOS)、开放麒麟(openKylin)、深度(deepin)五大操作系统开源社区携手并进,共同发起开源生态发展合作倡议,旨在书写开源生态繁荣的新篇章。在此,我们提出三点
- 【机器学习】使用scikit-learn中的KNN包实现对鸢尾花数据集或者自定义数据集的的预测
加德霍克
机器学习人工智能python学习作业
一、KNN算法概念K最近邻(K-NearestNeighbor,KNN)分类算法是数据挖掘分类技术中最简单的方法之一,是著名的模式识别统计学方法,在机器学习分类算法中占有相当大的地位。它是一个理论上比较成熟的方法。既是最简单的机器学习算法之一,也是基于实例的学习方法中最基本的,又是最好的文本分类算法之一。二、对鸢尾花数据集进行预测1、代码示例:fromsklearn.datasetsimportl
- 第84期 | GPTSecurity周报
aigc
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。SecurityPapers1.利用数据流路径对大
- 从文字到思维:呆马GPT在人工智能领域的创新之旅
呆码科技
gpt人工智能
引言生成式预训练变换器(GenerativePre-trainedTransformer,简称GPT)领域是人工智能技术中的一大革新。自OpenAI推出第一代GPT以来,该技术经历了多代发展,不断提升模型的规模、复杂度和智能化程度。GPT模型通过在大规模数据集上进行预训练,学习语言的统计规律和世界知识,然后在特定任务上进行微调,以适应不同的应用需求。GPT领域的发展推动了自然语言处理(NLP)技术
- DeepSeek 公开新的模型权重
数据分析能量站
机器学习人工智能
DeepSeek-V3是一款开源大语言模型,在关键基准测试中超越了Llama3.1405B和GPT-4o,尤其在编码和数学任务中成绩优异。除特定受限应用(军事、伤害未成年人、生成虚假信息等)外,模型权重开源,可在线下载。工作原理混合专家架构(MoE):DeepSeek-V3是MoE型Transformer模型,有6710亿个参数,运行时370亿参数激活。相比Llama3.1405B,训练时间大幅缩
- 奇墨ITQM智能运维系统三大优势领航企业运维管理
奇墨 ITQM
运维云计算
企业对于IT运维管理的需求日益增长且愈发复杂,奇墨ITQM智能运维系统应运而生,以其独具的优势,为企业构建先进的智能运维和管理体系,从而实现企业云成本优化。.01自上而下的垂直管理理念在企业加速数字化转型的背景下,传统的“自下而上”的企业管理模式以无法满足企业管理的发展。奇墨ITQM智能运维系统采用了“自上而下”的垂直管理理念,实现从管理者到执行者的全面智能运维管理。奇墨ITQM智能运维系统赋予企
- 深度探索 DeepSeek-R1:国产大模型的AGI雏形与创新进展
微凉的衣柜
科技头条agi人工智能
随着人工智能技术的飞速发展,国内外企业纷纷发布了一系列创新的大模型,推动了AGI(通用人工智能)领域的探索。近期,DeepSeek-R1这一模型的发布引起了广泛关注,它不仅标志着国产大模型在智能化上的一次重大突破,还提出了全新的训练方法,解决了过去依赖大量人类数据的问题。本篇文章将详细介绍DeepSeek-R1的核心优势、技术创新以及实际应用案例,揭示它在AGI领域的潜力。1.DeepSeek-R
- 生数科技携手央视新闻《文博日历》,推动AI视频技术的创新应用
TMT星球
人工智能人工智能科技大数据
近日,生数科技携手央视新闻《文博日历》栏目,借助其旗下AI视频大模型及应用产品Vidu,共同打造AI版2025年文博日历联欢晚会,全面推动AI视频生成技术在媒体中的创新实践。《文博日历》是央视新闻客户端联合各大博物馆推出的文博科普产品,以新媒体形式为观众呈现丰富多彩的文博知识和历史文化。据「TMT星球」了解,此次合作中,生数科技为《文博日历》量身定制了AI视频生成方案,让文物们“动”起来,共同出演
- 天天AI-20250121:全面解读 AI 实践课程:动手学大模型(含PDF课件)
AI2AGI
天天AI人工智能大数据ai文心一言百度
2AGI.NET|探索AI无限潜力,2AGI为您带来最前沿资讯。2AGI.NET:天天AI-20250121从开源版o1模型的发布到Adobe推出音乐模型DITTO-2,再到OpenAI为研究长寿推出的GPT-4b,AI技术正以前所未有的速度和规模影响着我们的世界。本文将为您梳理近期的技术热点,带您一探究竟。全面解读AI实践课程:动手学大模型(含PDF课件)该教程内容较为专业,理解起来有一定难度,
- 基于Langchain框架,采用Qwen2.5大模型,搭建自己的Agent,ReACT效果比RAG好
张登杰踩
langchainpython人工智能语言模型
最近在做RAG,调研后发现ReACT好像更具有说服力,对最终结果的解释也更加合理。举个例子,我扔给大模型这样一个问题:15的平方是多少?另外,法国的首都是哪里?采用ReACT的运行结果如下:>EnteringnewAgentExecutorchain...我需要先计算15的平方,然后搜索法国的首都。Action:平方计算器ActionInput:"15"Observation:15的平方等于225
- Day05:C语言学习作业
老薛爱吃大西瓜
c语言学习算法开发语言
考虑到多重循环对程序效率的影响,以下哪种实现效率较高?为什么?(a)循环次数大的放在外层,循环次数小的放在内层;(b)循环次数小的放在外层,循环次数大的放在内层;答案:循环小的在外层效率高,因为CPU中会对循环次数进行缓存,当循环多后CPU需要进行多次缓存,减少效率请简述以下两个for循环的优缺点。(1)、for(i=0;i#defineN4voidmain(){inti;intx1=1,x2=2
- ARM下汇编语言编程
Kylin77626
arm开发
一、ARM汇编语言程序格式ARM汇编语言是以段(section)为单位来组织源文件的。段是相对独立的、具有特定名称的、不可分割的指令或者数据序列。段又可以分为代码段和数据段,代码段存放执行代码,数据段存放代码运行时需要用到的数据。一个ARM源程序至少需要一个代码段,大的程序可以包含多个代码段和数据段。二、ARM汇编语言中常用的伪操作例如:areareset,code,readonly;声明了一个名
- Open AI GPT大模型深度解析:通往智能的里程碑
xziyuan
人工智能gpt
大模型——OpenAIGPT大模型介绍人工智能技术的快速发展引发了对智能系统和应用的巨大需求。多模态大模型已经成为了人工智能领域的重要研究方向之一。OpenAI作为一家全球领先的人工智能公司,在推动人工智能技术的边界上发挥着重要作用,其在大模型方面的研究和应用也是一直处于领先地位。本文将介绍OpenAI多模态大模型的研究成果和应用,探讨其在人工智能领域的重要性和影响力,以及给世界带来的可能性。1.
- # AI计算模式 神经网络模型 深度神经网络 多层感知机 卷积神经网络 循环神经网络 长短期记忆网络 图像识别、语音识别、自然语言 轻量化模型和模型压缩 大模型分布式并行
EwenWanW
AGI人工智能神经网络dnn
AI计算模式AI技术发展至今,主流的模型是深度神经网络模型。近20年来,神经网络模型经过多样化的发展,模型总体变得越来越复杂和庞大,对硬件设备的计算速度、存储能力、通信速度的要求越来越高。尽管学者已经提出了许多方法优化模型结构,降低模型的参数量,但是伴随着人们对AI能力的要求越来越高,模型变得更大是不可避免的。原先单CPU可进行模型的训练与推理,如今需要使用GPU、TPU等设备,并通过分布式并行的
- LLaMA Pro是什么 相比于lora full freeze有什么区别 怎么使用
Ven%
简单说深度学习深度学习基础动手深度学习速通系列llamatransformer深度学习人工智能
1.LLaMAPro是什么?LLaMAPro是一种基于LLaMA架构改进的大型语言模型(LLM),旨在解决大模型微调中的知识遗忘问题。它通过在原有模型的基础上扩展新的模块(如Transformer块),并在微调时仅训练这些新增模块,从而在适应新任务的同时保留预训练模型的通用知识。LLaMAPro在代码理解、数学推理和语言理解等任务上表现出色,特别适合需要持续学习和多任务处理的场景。2.LLaMAP
- 【vLLM 学习】使用 OpenVINO 安装
vLLM是一款专为大语言模型推理加速而设计的框架,实现了KV缓存内存几乎零浪费,解决了内存管理瓶颈问题。更多vLLM中文文档及教程可访问→https://vllm.hyper.ai/由OpenVINO驱动的vLLM支持来自vLLM支持的模型列表中的所有LLM模型,并且可以在所有x86-64CPU上(至少需要AVX2支持)进行最佳的模型服务。OpenVINO的vLLM后端支持以下高级vLLM特性:前
- a16z:给新一届 SEC 的 6 大监管建议
安全智能合约web3
作者:Techub精选编译撰文:ScottWalker(a16z首席合规官)和BillHinman(前美SEC财务部主任)编译:Yangz,TechubNews随着技术的不断进步,美国证券交易委员会(SEC)也必须与时俱进,这一点在加密货币领域尤为明显。新的领导层以及新的加密货币特别工作组的成立,为该机构采取行动并及时做出调整提供了契机。如今,正是采取行动的关键时刻。加密货币市场的规模和复杂性正在
- 一镜到底、智能填充、悬停适配开发实践
harmonyos
课程简介本课程是【HarmonyOSTechTalk】的第30课。本课程将向开发者介绍HarmonyOS系统的强大开发能力,重点讲解三大核心特性:一镜到底、悬停适配、智能填充,帮助开发者更高效地构建优质的鸿蒙应用。课程旨在帮助开发者提升构建优质鸿蒙应用的能力,通过学习这些特性,开发者可以提升应用开发的灵活性和用户体验,从而开发更具创新性的跨平台应用。标签高级课程HarmonyOS一镜到底悬停智能填
- 快手可灵视频生成大模型全方位测评
人工智能llm
快手视频生成大模型“可灵”(Kling),是全球首个真正用户可用的视频生成大模型,自面世以来,凭借其无与伦比的视频生成效果,在全球范围内赢得了用户的热烈追捧与高度评价。截至目前,申请体验其内测版的用户数量已突破70万大关,累计生成的视频作品更是高达700万。可灵在持续创新的道路上也从未停下脚步,在七月份举办的世界人工智能大会(WAIC)期间,可灵再次迎来重大升级。新功能包括上线web端、基础模型效
- 五金行业MES生产管理系统有哪些优势?
在机械制造领域,五金零件加工和精密零件加工可是两大支柱。五金零件,顾名思义,就是那些用金属制成的各种部件,广泛应用于各种机械设备、电子产品、汽车等等。而精密零件加工则对加工精度和质量要求更高,通常出现在高端设备和仪器上。说到我国,那可是有不少企业专门从事五金零件和精密零件的加工定制。这些企业可以根据客户的需求,加工各种型号、规格和材质的零件。加工过程也是五花八门,包括车削、铣削、磨削、钻孔、攻丝等
- 每日论文推荐:我们距离GPT-4V有多远,最接近GPT-4V的开源多模态大模型
linxid
openopenaiGPT-5多模态大模型上海上海AI人工智能
元数据概览:标题:HowFarAreWetoGPT-4V?ClosingtheGaptoCommercialMultimodalModelswithOpen-SourceSuites作者:ZheChen,WeiyunWang,HaoTian,ShenglongYe,ZhangweiGao,ErfeiCui,WenwenTong,KongzhiHu,JiapengLuo,ZhengMa,JiMa,J
- 深度学习-94-大语言模型LLM之基于langchain的链Chain的基础应用和调用方式
皮皮冰燃
深度学习深度学习语言模型langchain
文章目录1Chain链的分类1.1LCELChains(链构造器)1.2LegacyChains(遗留链)2链的基础应用2.1OllamaLLM2.2是否使用chain的对比2.2.1不使用Chain2.2.2使用Chain3链的调用方式3.1通过invoke方法【推荐】3.2通过predict方法3.3通过apply方法3.4通过generate方法4参考附录1Chain链的分类为开发更复杂的应
- 原创提示词:中英法德四国翻译家
姚瑞南
prompt实战应用案例人工智能AIGC
本文原创作者:姚瑞南AI-agent大模型运营专家,先后任职于美团、猎聘等中大厂AI训练专家和智能运营专家岗;多年人工智能行业智能产品运营及大模型落地经验,拥有AI外呼方向国家专利与PMP项目管理证书。(转载需经授权)目录prompt应用效果:原文:英文(English):法文(Français):德文(Deutsch):prompt#Role:Local-DialectProficientEdi
- C# OpenCV机器视觉:红外体温检测
pchmi
C#OpenCV机器视觉c#opencv数码相机计算机视觉OpenCVSharp人工智能机器视觉
在一个骄阳似火的夏日,全球却被一场突如其来的疫情阴霾笼罩。阿强所在的小镇,平日里熙熙攘攘的街道变得冷冷清清,人们戴着口罩,行色匆匆,眼神中满是对病毒的恐惧。阿强作为镇上小有名气的科技达人,看着这一切,心急如焚,心中暗下决心:“我一定要利用我的技术,为抗击疫情做点什么!”思来想去,他把目光投向了OpenCvSharp和那台尘封已久的红外相机,一个大胆的计划在他心中悄然成型——用红外相机检测体温,为大
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>