- 决策树的核心思想
code 旭
AI人工智能学习决策树算法机器学习
一、决策树的核心思想本质:通过特征判断对数据集递归划分,形成树形结构。目标:生成一组“若-则”规则,使数据划分到叶子节点时尽可能纯净。关键流程:特征选择:选择最佳分裂特征(如信息增益最大)。节点分裂:根据特征取值划分子节点。停止条件:节点样本纯度过高或样本数过少时终止。二、数学公式与理论1.信息熵(InformationEntropy)衡量数据集的混乱程度:H(D)=−∑k=1Kpklog2pk
- 卡尔曼滤波算法从理论到实践:在STM32中的嵌入式实现
DOMINICHZL
STM32算法stm32嵌入式硬件
摘要:卡尔曼滤波(KalmanFilter)是传感器数据融合领域的经典算法,在姿态解算、导航定位等嵌入式场景中广泛应用。本文将从公式推导、代码实现、参数调试三个维度深入解析卡尔曼滤波,并给出基于STM32硬件的完整工程案例。一、卡尔曼滤波核心思想1.1什么是卡尔曼滤波?卡尔曼滤波是一种最优递归估计算法,通过融合预测值(系统模型)与观测值(传感器数据),在噪声干扰环境下实现对系统状态的动态估计。其核
- 深度学习:马氏距离
壹十壹
深度学习深度学习人工智能
马氏距离(MahalanobisDistance)是一种用于计算不同维度数据点之间距离的度量方法。它考虑了数据的协方差结构,因此在处理具有相关性的多维数据时更加有效。与欧氏距离不同,马氏距离不仅考虑了各个变量的量纲,还考虑了它们之间的相关性。公式马氏距离计算两个向量(x)和(y)之间的距离,定义为:DM(x,y)=(x−y)TS−1(x−y)\D_M(x,y)=\sqrt{(x-y)^TS^{-1
- 深度学习:偏差和方差
壹十壹
深度学习深度学习人工智能python机器学习
偏差(Bias)偏差衡量了模型预测值的平均值与真实值之间的差距。换句话说,偏差描述了模型预测的准确度。一个高偏差的模型容易出现欠拟合,即模型无法捕捉数据中的真实关系,因为它对数据的特征做出了错误的假设。特征:高偏差的模型通常是过于简单的模型,无法对数据中的复杂关系进行准确建模。高偏差模型的训练误差和测试误差可能都较高。解决方法:增加模型复杂度:例如增加多项式的阶数、增加神经网络的层数等。使用更多的
- 太翌氏文化产业: AGI架构部署
太翌修仙笔录
deepseek第三代人工智能agi架构人工智能
在之前RGOA-重力算法等基础上,分析春秋历日盘排盘驱动行为的ai模式,是否达到AGI标准春秋历日盘排盘驱动行为的AI模式与AGI标准的对比分析一、RGOA-重力算法与春秋历日盘排盘的核心逻辑RGOA算法原理RGOA(GravitationalSearchAlgorithm)是一种基于物理引力定律的优化算法,通过模拟粒子在引力场中的运动来寻找最优解。其核心公式为:Fij=GmimjRij2+ϵ和a
- 【贪心算法2】
m0_46150269
贪心算法算法
力扣122.买卖股票最佳时机Ⅱ链接:link思路要求最大利润,可以分解成子问题求解,在最低价格买入,最高价格卖出。假如第0天价格最低,第3天价格最高,利润=prices[3]-pricnes[0],可以将利润公式拆解成(prices[3]-prices[2])+(prices[2]-prices[1])+(prices[1]-prices[0])最终变成了求相邻两天的利润,所以可以得到一个关于利润
- 神经网络中梯度计算求和公式求导问题
serve the people
日常琐问神经网络机器学习算法
以下是公式一推导出公式二的过程。表达式一∂E∂wjk=−2(tk−ok)⋅sigmoid(∑jwjk⋅oj)⋅(1−sigmoid(∑jwjk⋅oj))⋅∂∂wjk(∑jwjk⋅oj)\frac{\partialE}{\partialw_{jk}}=-2(t_k-o_k)\cdot\text{sigmoid}\left(\sum_jw_{jk}\cdoto_j\right)\cdot(1-\tex
- 【Latex】latex公式手册||积分公式表示||极限表达||矩阵的各种表达
zjoy_2233
效率技巧栏矩阵线性代数Latex数学高等数学学习python
为了能够更好地写数学讲义【费曼学习法,故学习Latex的记录】文章目录如何插入公式基础格式:基础符号上标理解:“^”下标:“_”根式分式①简单分式②多层分式多层分式的第二种写法(斜着的除法写法):函数表达对数绝对值积分不定积分定积分多重积分极限①一般极限②左右极限复杂极限练习求和和求积①求和②求积矩阵表示①无括号矩阵②圆括号矩阵③中括号矩阵④大括号⑤单竖线⑥双竖线分段函数(分类讨论需要)集合语言关
- 数据库索引管理:不用的索引应该直接删除吗?
后端数据库mysql
一、索引的本质与价值:双刃剑的深层解析数据库索引的本质是通过B+Tree、Hash等数据结构实现的快速检索机制,其核心价值在于将时间复杂度从O(n)降为O(logn)。但索引的维护成本常常被低估:写操作成本倍增:每次INSERT操作需更新所有相关索引,某电商平台实测显示,每增加一个索引,TPS下降8-12%存储空间占用指数增长:复合索引的存储需求遵循组合数公式C(n,k),当字段数n增加时,空间消
- 数据库索引管理:不用的索引应该直接删除吗?
后端数据库mysql
一、索引的本质与价值:双刃剑的深层解析数据库索引的本质是通过B+Tree、Hash等数据结构实现的快速检索机制,其核心价值在于将时间复杂度从O(n)降为O(logn)。但索引的维护成本常常被低估:写操作成本倍增:每次INSERT操作需更新所有相关索引,某电商平台实测显示,每增加一个索引,TPS下降8-12%存储空间占用指数增长:复合索引的存储需求遵循组合数公式C(n,k),当字段数n增加时,空间消
- 【深度学习】Adam(Adaptive Moment Estimation)优化算法
辰尘_星启
机器学习--深度学习深度学习算法人工智能Adampytorchpython
概述Adam算法结合了动量法(Momentum)和RMSProp的思想,能够自适应调整每个参数的学习率。通过动态调整每个参数的学习率,在非平稳目标(如深度神经网络的损失函数)中表现优异目录基本原理和公式笼统说明:为什么Adam算法可以帮助模型找到更好的参数基本概念动量(Momentum):跟踪梯度的指数衰减平均(一阶矩),加速收敛并减少震荡。自适应学习率:跟踪梯度平方的指数衰减平均(二阶矩),调整
- html程序国庆节祝福,2019国庆节祝福语送给朋友微信
皆苦52
html程序国庆节祝福
1.十月金秋来到,百花吐芳争艳。红旗迎风飞舞,人人绽开笑颜。歌声飘扬天外,舞步随处翩跹。国庆佳节来到,思念只增不减。愿你快乐无限,生活幸福平安!2.十月里的第一天,让好运第一个找你。但愿,我是第一个问候你的人。用十足的真诚祝福你,愿你魅力十足,生活十全十美,过一个快乐的国庆节。3.十月天高云淡,秋日阳光灿烂,喜庆枫叶红遍,千山层林尽染。大街小巷快乐弥漫,东南西北烟火璀璨,国庆佳节绽放笑颜,衷心祝您
- 数学建模与优化算法在确定X和Y值时,如何处理实验数据的不确定性?
学术乙方
油纸绝缘算法经验分享
在数学建模与优化算法中处理实验数据的不确定性以确定油纸绝缘系统中的X和Y值,可以参考以下方法和步骤:建立数学模型油纸绝缘系统的几何结构可以用X-Y模型来描述,其中X表示挡板厚度与总厚度的比值,Y表示间隔器宽度与总宽度的比值。这些参数直接影响油纸绝缘的介电特性。通过实验数据(如介电谱曲线)和理论模型,可以建立数学方程来描述X和Y对介电特性的影响。引入不确定性建模实验数据通常存在测量误差、环境变化等因
- 技术人实测 | 如何用AI工具2分钟突破知网AIGC检测线
LL06210721
人工智能AIGC
最近在GitHub发现个有意思的本地化算法工具,其核心是通过对抗式语义重组技术重构文本逻辑链。测试时发现:将GPT生成的论文导入后,系统会保留原始参考文献格式,同时用学术同义词替换引擎重写表达结构。实测数据:某985实验室的AI生成稿经处理,知网AIGC率从38%→9.7%(检测截图已脱敏),维普重复率从24%→8.3%。工具最实用的三个细节:保留公式编号和图表位置不变支持LaTeX源码级修改追踪
- 计算系统概述核心知识图谱(考研专项版)
王嘉俊925
计算机组成原理考研考研计算机组成原理计组
计算机系统核心知识图谱(考研专项版)计算机分类:细化对比与考点映射电子模拟vs数字计算机对比表(常考选择题)特性电子模拟计算机电子数字计算机信号类型连续物理量(电压/温度)离散数字信号(二进制)精度低(误差1%-0.1%)极高(理论无限精度)运算方式并行模拟电路串行/并行数字电路存储能力无独立存储器分层存储体系典型应用仪表控制系统(如PID调节)通用计算、数据处理专用计算机新增考点DSP芯片特性:
- 深度学习笔记——Resnet和迁移学习
肆——
深度学习深度学习笔记迁移学习
1.ResNet的提出深度学习与网络深度的挑战:在深度学习中,网络的“深度”(即层数)通常与模型的能力成正比。然而,随着网络深度的增加,一些问题也随之出现,最突出的是梯度消失/爆炸问题。这使得深层网络难以训练。梯度消失:梯度消失是指在训练深度神经网络时,通过多层传递的梯度(误差)变得非常小,接近于零。这导致网络中较早层的权重更新非常缓慢,甚至几乎不更新。梯度爆炸:梯度爆炸是指在训练深度神经网络时,
- 大话机器学习三大门派:监督、无监督与强化学习
安意诚Matrix
机器学习笔记机器学习人工智能
以武侠江湖为隐喻,系统阐述了机器学习的三大范式:监督学习(少林派)凭借标注数据精准建模,擅长图像分类等预测任务;无监督学习(逍遥派)通过数据自组织发现隐藏规律,在生成对抗网络(GAN)等场景大放异彩;强化学习(明教)依托动态环境交互优化策略,驱动AlphaGo、自动驾驶等突破性应用。文章融合技术深度与江湖趣味,既解析了CNN、PCA、Q-learning等核心算法的"武功心法"(数学公式与代码实现
- <RTL设计的艺术> DDR带宽计算公式
积小流哥
RTL设计的艺术芯片verilogfpga
目录一、问题背景二、计算公式三、公式解释四、举例说明五、总结一、问题背景给出一个DDR访问latency,以及主频等信息,怎么计算用户可以拿到的带宽?二、计算公式Bandwidth=Outstanding*(TransSize*Bus_Frequence)/Latency三、公式解释Bandwidth:带宽(单位:MBps)TransSize=BurstLength*BurstSize(单位:By
- 【人工智能】随机森林的智慧:集成学习的理论与实践
蒙娜丽宁
人工智能人工智能随机森林集成学习
随机森林(RandomForest)是一种强大的集成学习算法,通过构建多棵决策树并结合投票或平均预测提升模型性能。本文深入探讨了随机森林的理论基础,包括决策树的构建、Bagging方法和特征随机选择机制,并通过LaTeX公式推导其偏差-方差分解和误差分析。接着,我们详细描述了随机森林的算法流程,分析其在分类和回归任务中的适用性。文章还通过实验对比随机森林与单一决策树及其他算法(如SVM)的性能,探
- 带宽计算公式
Hug Freedom.
单片机fpga开发嵌入式硬件
带宽=时钟频率*数据位宽带宽的定义就是单位时间(每秒)内传输的数据量假设我们有一个数据传输系统,其时钟频率为f(单位:Hz),这意味着每秒钟会有f个时钟周期。数据位宽为n(单位:bit),即在每个时钟周期内,可以传输n位的数据。那么在一秒钟内,由于有f个时钟周期,每个周期传输n位数据,所以总共传输的数据量就是f×n位。例如,一个系统的时钟频率为100MHz(即100×106Hz),数据位宽为32位
- C语言------指针从入门到精通
Oracle_666
c语言开发语言
第一部分:前言:本篇文章主要划分为两大部分:第一部分适合零基础的同学,主要学习了解指针的概念,对指针大概有个概念。如果你已经有基础,即可跳过第一部分的内容。第二部分主要是分解指针的实现逻辑,通过19个例子,再结合代码公式把不同类型的指针及指针的应用详细解析。指针是干啥用的?指针是一个特殊的变量,它里面存储的数值被解释成为内存里的一个地址。要想了解一个指针就需要理解指针的四方面的内容:指针的类型、指
- 数据分析面试全攻略:业务分析能力篇
代码CC
数据分析(包括各种面试题)面试数据分析面试pythonsql
前言:业务分析能力考察重点在数据分析岗位面试中,业务分析能力是区分初级与中高级候选人的核心要素。本篇将从指标设计、异常分析、用户增长三大模块,解析业务分析能力提升路径。一、指标设计:用数据定义业务价值1.1用户留存分析体系留存率计算模型定义公式:次日留存率=第2天活跃用户数/首日新增用户数×100%7日留存率=第8天活跃用户数/首日新增用户数×100%SQL计算模板:WITHfirst_login
- 快瞳通用文档解析技术是怎样赋能下游各类大语言模型任务?
深圳市快瞳科技有限公司
语言模型easyui人工智能
、为什么不直接用大模型去解析文档?在文档、票据结构化识别这个赛道上,大语言模型存在天然的局限性:1.结构化数据生成效率低大模型在处理表格、公式等结构化内容时,需消耗大量计算资源,生成速度慢且成本高昂。例如,生成复杂表格可能导致响应延迟或格式错误。2.幻觉与准确性不足大模型可能虚据(如编造表格内容)或偏离文档原意,尤其在处理专业领域文档时,缺乏对上下文和实体关系的精准把控。3.格式兼容性差大模型难以
- 论文阅读笔记——Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware
寻丶幽风
论文阅读笔记论文阅读笔记人工智能深度学习机器人
ALOHA论文ALOHA解决了策略中的错误可能随时间累积,且人类演示可能是非平稳的,提出了ACT(ActionChunkingwithTransformers)方法。ActionChunking模仿学习中,compoundingerror是致使任务失败的主要原因。具体来说,当智能体(agent)在测试时遇到训练集中未见过的情况时,可能会产生预测误差。这些误差会逐步累积,导致智能体进入未知状态,最终
- markdown语法
cclsdxs
python
Markdown语法目录Markdown语法一、基础语法1.标题2.字体3.列表4.分割线二、高级功能1.表格制作2.公式3.流程图4.代码一、基础语法1.标题#号与文字之间要有一个空格#一级标题##二级标题###三级标题####四级标题2.字体斜体文本或斜体文本删除线文本高亮文本*斜体文本*或_斜体文本_~~删除线文本~~==高亮文本==3.列表无序列表项1无序列表项2*无序列表项1*无序列表
- 位数不足前面补0mysql语句_SQL语句 不足位数补0
Yu-Demon321
位数不足前面补0mysql语句
selectRIGHT('0000'+CAST('123'ASnvarchar(50)),4)DWBH公式RIGHT('位数'+CAST(要判断的字段ASnvarchar(50)),位数)……--第一种方法SELECTRIGHT('00000'+CAST(IDASnvarchar(50)),5)FROMdbo.TableName--左边补0,如00001,00039SELECTLEFT(CAST(
- Mistral 发布 Mistral OCR,号称「世界上最好的 OCR 模型」
自不量力的A同学
ocr
Mistral发布的MistralOCR号称“世界上最好的OCR模型”,以下是对它的详细介绍:产品概述MistralOCR是一种光学字符识别API,以图像和PDF作为输入,可从有序交错的文本和图像中提取内容,能理解文档的每个元素,包括媒体、文本、表格、公式等,可与RAG系统结合,处理多模式文档。核心优势顶尖的复杂文档理解能力:可精准识别科学论文、技术文献中的图表、公式(含LaTeX)、表格及混合排
- PyTorch:Python深度学习框架使用详解
零 度°
pythonpython深度学习pytorch
PyTorch是一个开源的机器学习库,广泛用于计算机视觉和自然语言处理领域。它由Facebook的AI研究团队开发,因其动态计算图、易用性以及与Python的紧密集成而受到开发者的青睐。PyTorch的主要特点动态计算图:PyTorch的计算图在运行时构建,使得模型的修改和调试更加灵活。自动微分:自动计算梯度,简化了机器学习模型的训练过程。丰富的API:提供了丰富的神经网络层、函数和损失函数。跨平
- 简记_ MCU管脚的防静电处理
土豆19891021
EMC嵌入式硬件
一、分析(一)接口处的信号要先过ESD/TVS管,然后拉到被保护器件;建个ESD电路发生器的模型,代入到我们的电路中去分析:继电器实现这两个“开关”,并且还会感应出一些额外的RLC寄生。ESD的频谱是宽带的(指的是各种频率分量都有),频率范围大概是几十MHz到500MHz,ESD波形具有0.7~1ns的上升沿,通过上升沿跟最大带宽的计算公式0.35/tr,可得最大带宽约为:0.35/0.7ns=0
- 《职场趣事:“懂哥”的电脑乌龙记》
故障抖机灵大师
职场经验生活片段电脑生活程序人生
系列文章目录文章目录系列文章目录引子一、懂哥强行认机二、又又又打脸的懂哥总结引子在职场这片满是公式的“神秘丛林”里,“懂哥”宛如一个独特的“神奇变数”,总能凭借那些令人啼笑皆非的“神操作”,为平淡如水的工作日常添上一抹别样的“魔幻色彩”。上次硬盘闹剧刚华丽落幕,最近,一场电脑乌龙事件又在“懂哥”这位“超级导演”的精心策划下,精彩开场,简直像一部永不停歇的荒诞喜剧。一、懂哥强行认机那天清晨,在我正一
- 桌面上有多个球在同时运动,怎么实现球之间不交叉,即碰撞?
换个号韩国红果果
html小球碰撞
稍微想了一下,然后解决了很多bug,最后终于把它实现了。其实原理很简单。在每改变一个小球的x y坐标后,遍历整个在dom树中的其他小球,看一下它们与当前小球的距离是否小于球半径的两倍?若小于说明下一次绘制该小球(设为a)前要把他的方向变为原来相反方向(与a要碰撞的小球设为b),即假如当前小球的距离小于球半径的两倍的话,马上改变当前小球方向。那么下一次绘制也是先绘制b,再绘制a,由于a的方向已经改变
- 《高性能HTML5》读后整理的Web性能优化内容
白糖_
html5
读后感
先说说《高性能HTML5》这本书的读后感吧,个人觉得这本书前两章跟书的标题完全搭不上关系,或者说只能算是讲解了“高性能”这三个字,HTML5完全不见踪影。个人觉得作者应该首先把HTML5的大菜拿出来讲一讲,再去分析性能优化的内容,这样才会有吸引力。因为只是在线试读,没有机会看后面的内容,所以不胡乱评价了。
- [JShop]Spring MVC的RequestContextHolder使用误区
dinguangx
jeeshop商城系统jshop电商系统
在spring mvc中,为了随时都能取到当前请求的request对象,可以通过RequestContextHolder的静态方法getRequestAttributes()获取Request相关的变量,如request, response等。 在jshop中,对RequestContextHolder的
- 算法之时间复杂度
周凡杨
java算法时间复杂度效率
在
计算机科学 中,
算法 的时间复杂度是一个
函数 ,它定量描述了该算法的运行时间。这是一个关于代表算法输入值的
字符串 的长度的函数。时间复杂度常用
大O符号 表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是
渐近 的,它考察当输入值大小趋近无穷时的情况。
这样用大写O()来体现算法时间复杂度的记法,
- Java事务处理
g21121
java
一、什么是Java事务 通常的观念认为,事务仅与数据库相关。 事务必须服从ISO/IEC所制定的ACID原则。ACID是原子性(atomicity)、一致性(consistency)、隔离性(isolation)和持久性(durability)的缩写。事务的原子性表示事务执行过程中的任何失败都将导致事务所做的任何修改失效。一致性表示当事务执行失败时,所有被该事务影响的数据都应该恢复到事务执行前的状
- Linux awk命令详解
510888780
linux
一. AWK 说明
awk是一种编程语言,用于在linux/unix下对文本和数据进行处理。数据可以来自标准输入、一个或多个文件,或其它命令的输出。它支持用户自定义函数和动态正则表达式等先进功能,是linux/unix下的一个强大编程工具。它在命令行中使用,但更多是作为脚本来使用。
awk的处理文本和数据的方式:它逐行扫描文件,从第一行到
- android permission
布衣凌宇
Permission
<uses-permission android:name="android.permission.ACCESS_CHECKIN_PROPERTIES" ></uses-permission>允许读写访问"properties"表在checkin数据库中,改值可以修改上传
<uses-permission android:na
- Oracle和谷歌Java Android官司将推迟
aijuans
javaoracle
北京时间 10 月 7 日,据国外媒体报道,Oracle 和谷歌之间一场等待已久的官司可能会推迟至 10 月 17 日以后进行,这场官司的内容是 Android 操作系统所谓的 Java 专利权之争。本案法官 William Alsup 称根据专利权专家 Florian Mueller 的预测,谷歌 Oracle 案很可能会被推迟。 该案中的第二波辩护被安排在 10 月 17 日出庭,从目前看来
- linux shell 常用命令
antlove
linuxshellcommand
grep [options] [regex] [files]
/var/root # grep -n "o" *
hello.c:1:/* This C source can be compiled with:
- Java解析XML配置数据库连接(DOM技术连接 SAX技术连接)
百合不是茶
sax技术Java解析xml文档dom技术XML配置数据库连接
XML配置数据库文件的连接其实是个很简单的问题,为什么到现在才写出来主要是昨天在网上看了别人写的,然后一直陷入其中,最后发现不能自拔 所以今天决定自己完成 ,,,,现将代码与思路贴出来供大家一起学习
XML配置数据库的连接主要技术点的博客;
JDBC编程 : JDBC连接数据库
DOM解析XML: DOM解析XML文件
SA
- underscore.js 学习(二)
bijian1013
JavaScriptunderscore
Array Functions 所有数组函数对参数对象一样适用。1.first _.first(array, [n]) 别名: head, take 返回array的第一个元素,设置了参数n,就
- plSql介绍
bijian1013
oracle数据库plsql
/*
* PL/SQL 程序设计学习笔记
* 学习plSql介绍.pdf
* 时间:2010-10-05
*/
--创建DEPT表
create table DEPT
(
DEPTNO NUMBER(10),
DNAME NVARCHAR2(255),
LOC NVARCHAR2(255)
)
delete dept;
select
- 【Nginx一】Nginx安装与总体介绍
bit1129
nginx
启动、停止、重新加载Nginx
nginx 启动Nginx服务器,不需要任何参数u
nginx -s stop 快速(强制)关系Nginx服务器
nginx -s quit 优雅的关闭Nginx服务器
nginx -s reload 重新加载Nginx服务器的配置文件
nginx -s reopen 重新打开Nginx日志文件
- spring mvc开发中浏览器兼容的奇怪问题
bitray
jqueryAjaxspringMVC浏览器上传文件
最近个人开发一个小的OA项目,属于复习阶段.使用的技术主要是spring mvc作为前端框架,mybatis作为数据库持久化技术.前台使用jquery和一些jquery的插件.
在开发到中间阶段时候发现自己好像忽略了一个小问题,整个项目一直在firefox下测试,没有在IE下测试,不确定是否会出现兼容问题.由于jquer
- Lua的io库函数列表
ronin47
lua io
1、io表调用方式:使用io表,io.open将返回指定文件的描述,并且所有的操作将围绕这个文件描述
io表同样提供三种预定义的文件描述io.stdin,io.stdout,io.stderr
2、文件句柄直接调用方式,即使用file:XXX()函数方式进行操作,其中file为io.open()返回的文件句柄
多数I/O函数调用失败时返回nil加错误信息,有些函数成功时返回nil
- java-26-左旋转字符串
bylijinnan
java
public class LeftRotateString {
/**
* Q 26 左旋转字符串
* 题目:定义字符串的左旋转操作:把字符串前面的若干个字符移动到字符串的尾部。
* 如把字符串abcdef左旋转2位得到字符串cdefab。
* 请实现字符串左旋转的函数。要求时间对长度为n的字符串操作的复杂度为O(n),辅助内存为O(1)。
*/
pu
- 《vi中的替换艺术》-linux命令五分钟系列之十一
cfyme
linux命令
vi方面的内容不知道分类到哪里好,就放到《Linux命令五分钟系列》里吧!
今天编程,关于栈的一个小例子,其间我需要把”S.”替换为”S->”(替换不包括双引号)。
其实这个不难,不过我觉得应该总结一下vi里的替换技术了,以备以后查阅。
1
所有替换方案都要在冒号“:”状态下书写。
2
如果想将abc替换为xyz,那么就这样
:s/abc/xyz/
不过要特别
- [轨道与计算]新的并行计算架构
comsci
并行计算
我在进行流程引擎循环反馈试验的过程中,发现一个有趣的事情。。。如果我们在流程图的每个节点中嵌入一个双向循环代码段,而整个流程中又充满着很多并行路由,每个并行路由中又包含着一些并行节点,那么当整个流程图开始循环反馈过程的时候,这个流程图的运行过程是否变成一个并行计算的架构呢?
- 重复执行某段代码
dai_lm
android
用handler就可以了
private Handler handler = new Handler();
private Runnable runnable = new Runnable() {
public void run() {
update();
handler.postDelayed(this, 5000);
}
};
开始计时
h
- Java实现堆栈(list实现)
datageek
数据结构——堆栈
public interface IStack<T> {
//元素出栈,并返回出栈元素
public T pop();
//元素入栈
public void push(T element);
//获取栈顶元素
public T peek();
//判断栈是否为空
public boolean isEmpty
- 四大备份MySql数据库方法及可能遇到的问题
dcj3sjt126com
DBbackup
一:通过备份王等软件进行备份前台进不去?
用备份王等软件进行备份是大多老站长的选择,这种方法方便快捷,只要上传备份软件到空间一步步操作就可以,但是许多刚接触备份王软件的客用户来说还原后会出现一个问题:因为新老空间数据库用户名和密码不统一,网站文件打包过来后因没有修改连接文件,还原数据库是好了,可是前台会提示数据库连接错误,网站从而出现打不开的情况。
解决方法:学会修改网站配置文件,大多是由co
- github做webhooks:[1]钩子触发是否成功测试
dcj3sjt126com
githubgitwebhook
转自: http://jingyan.baidu.com/article/5d6edee228c88899ebdeec47.html
github和svn一样有钩子的功能,而且更加强大。例如我做的是最常见的push操作触发的钩子操作,则每次更新之后的钩子操作记录都会在github的控制板可以看到!
工具/原料
github
方法/步骤
- ">的作用" target="_blank">JSP中的作用
蕃薯耀
JSP中<base href="<%=basePath%>">的作用
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
- linux下SAMBA服务安装与配置
hanqunfeng
linux
局域网使用的文件共享服务。
一.安装包:
rpm -qa | grep samba
samba-3.6.9-151.el6.x86_64
samba-common-3.6.9-151.el6.x86_64
samba-winbind-3.6.9-151.el6.x86_64
samba-client-3.6.9-151.el6.x86_64
samba-winbind-clients
- guava cache
IXHONG
cache
缓存,在我们日常开发中是必不可少的一种解决性能问题的方法。简单的说,cache 就是为了提升系统性能而开辟的一块内存空间。
缓存的主要作用是暂时在内存中保存业务系统的数据处理结果,并且等待下次访问使用。在日常开发的很多场合,由于受限于硬盘IO的性能或者我们自身业务系统的数据处理和获取可能非常费时,当我们发现我们的系统这个数据请求量很大的时候,频繁的IO和频繁的逻辑处理会导致硬盘和CPU资源的
- Query的开始--全局变量,noconflict和兼容各种js的初始化方法
kvhur
JavaScriptjquerycss
这个是整个jQuery代码的开始,里面包含了对不同环境的js进行的处理,例如普通环境,Nodejs,和requiredJs的处理方法。 还有jQuery生成$, jQuery全局变量的代码和noConflict代码详解 完整资源:
http://www.gbtags.com/gb/share/5640.htm jQuery 源码:
(
- 美国人的福利和中国人的储蓄
nannan408
今天看了篇文章,震动很大,说的是美国的福利。
美国医院的无偿入院真的是个好措施。小小的改善,对于社会是大大的信心。小孩,税费等,政府不收反补,真的体现了人文主义。
美国这么高的社会保障会不会使人变懒?答案是否定的。正因为政府解决了后顾之忧,人们才得以倾尽精力去做一些有创造力,更造福社会的事情,这竟成了美国社会思想、人
- N阶行列式计算(JAVA)
qiuwanchi
N阶行列式计算
package gaodai;
import java.util.List;
/**
* N阶行列式计算
* @author 邱万迟
*
*/
public class DeterminantCalculation {
public DeterminantCalculation(List<List<Double>> determina
- C语言算法之打渔晒网问题
qiufeihu
c算法
如果一个渔夫从2011年1月1日开始每三天打一次渔,两天晒一次网,编程实现当输入2011年1月1日以后任意一天,输出该渔夫是在打渔还是在晒网。
代码如下:
#include <stdio.h>
int leap(int a) /*自定义函数leap()用来指定输入的年份是否为闰年*/
{
if((a%4 == 0 && a%100 != 0
- XML中DOCTYPE字段的解析
wyzuomumu
xml
DTD声明始终以!DOCTYPE开头,空一格后跟着文档根元素的名称,如果是内部DTD,则再空一格出现[],在中括号中是文档类型定义的内容. 而对于外部DTD,则又分为私有DTD与公共DTD,私有DTD使用SYSTEM表示,接着是外部DTD的URL. 而公共DTD则使用PUBLIC,接着是DTD公共名称,接着是DTD的URL.
私有DTD
<!DOCTYPErootSYST