- LORA 微调大模型:从入门到入土
大模型.
人工智能开发语言gptagi架构大模型
在当今人工智能领域,预训练的大模型已经成为推动技术发展的核心力量。然而,在实际项目中,我们往往会发现这些预训练模型虽然强大,但直接就去应用于一些特定的任务时,往往无法完全满足需求。这时,微调就成为了必不可少的一步。而在众多微调方法中,LORA全名(Low-RankAdaptation)以高效性和实用性,逐渐成为了许多开发者训练模型的首选项。作为一名小有经验的咸鱼开发者,我深知在实际项目中高效的进行
- AI人工智能中的概率论与统计学原理与Python实战:Python实现概率模型
AI天才研究院
AI实战AI大模型企业级应用开发实战大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
1.背景介绍随着人工智能技术的不断发展,概率论与统计学在人工智能领域的应用越来越广泛。概率论与统计学是人工智能中的基础知识之一,它们在机器学习、深度学习、自然语言处理等领域都有着重要的作用。本文将介绍概率论与统计学的核心概念、算法原理、具体操作步骤以及Python实现方法,并通过具体代码实例进行详细解释。2.核心概念与联系2.1概率论与统计学的区别概率论是一门数学学科,它研究随机事件发生的可能性。
- 二值逻辑、三值逻辑到多值逻辑的变迁(含示例)
搏博
人工智能原理算法人工智能机器学习线性代数图像处理数据分析
二值逻辑、三值逻辑到多值逻辑的变迁是一个逻辑体系不断拓展和深化的过程,反映了人们对复杂现象和不确定性问题认识的逐步深入。前文,我们已经探讨过命题逻辑与谓词逻辑,了解了如何用符号语言从浅入深地刻画现实世界。具体可以看我的CSDN文章:人工智能的数学基础之命题逻辑与谓词逻辑(含示例)-CSDN博客人工智能中用到的逻辑可概括地划分为两大类。第一类是经典命题逻辑和一阶谓词逻辑,第二类是泛指除经典逻辑之外的
- ollama下载的DeepSeek的模型(Model)文件在哪里?(C盘下)
神秘泣男子
常见AI大模型部署与应用Ollama部署LLM人工智能ollamallama自然语言处理机器学习
目录一、下载大模型(DeepSeek)2.安装Ollama3.检查安装是否成功二、拉取大模型(DeepSeek)1.打开命令行2.下载模型3.测试下载4.等待下载完成三.模型存放路径这个位置!!在人工智能快速发展的今天,大语言模型已经成为许多人探索和使用的热门技术。而Ollama作为一款轻量级的本地大模型运行工具,让我们能够在个人电脑上体验各种强大的AI模型,如DeepSeek系列。不少用户在安装
- AIGC从入门到实战:可能消失的职业和新出现的机会
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AIGC从入门到实战:可能消失的职业和新出现的机会作者:禅与计算机程序设计艺术1.背景介绍人工智能生成内容(AIGC)正在迅速改变我们的世界。从文本、代码到图像和音乐,AIGC正在各个领域展示其强大的能力,并开始挑战传统的创意产业。本篇文章将深入探讨AIGC的概念、技术原理、应用场景以及其对未来职业的影响,并为读者提供入门AIGC的实用指南。1.1AIGC的兴起AIGC的兴起得益于近年来人工智能技
- 内容创作者必备!Deepseek赋能,让创作更高效
小焱创作
AI改变未来人工智能人工智能写作ai写作深度学习神经网络aichatgpt
内容创作者必备!DeepSeek赋能,让创作更高效在当今信息爆炸的时代,内容创作已成为自媒体博主们展现才华、吸引粉丝的重要途径。然而,面对日益增长的竞争压力和不断变化的用户需求,如何高效、高质量地产出内容成为了摆在我们面前的一大挑战。幸运的是,随着人工智能技术的飞速发展,一款名为DeepSeek的智能工具应运而生,为内容创作者提供了强大的赋能。本文将深入探讨DeepSeek的基本概念、深层次解读、
- 开源模型应用落地-Qwen2-VL-7B-Instruct-vLLM-OpenAI API Client调用
开源技术探险家
开源大语言模型-新手试炼深度学习AI编程AIGC
一、前言学习Qwen2-VL,为我们打开了一扇通往先进人工智能技术的大门。让我们能够深入了解当今最前沿的视觉语言模型的工作原理和强大能力。这不仅拓宽了我们的知识视野,更让我们站在科技发展的潮头,紧跟时代的步伐。Qwen2-VL具有卓越的图像和视频理解能力,以及多语言支持等特性。学习它可以提升我们处理复杂视觉信息的能力,无论是在学术研究中分析图像数据、解读视频内容,还是在实际工作中进行文档处理、解决
- ChatGPT、DeepSeek、Grok 三者对比:AI 语言模型的博弈与未来
一ge科研小菜菜
人工智能人工智能
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注1.引言随着人工智能技术的飞速发展,AI语言模型已经成为人机交互、内容创作、代码生成、智能问答等领域的重要工具。其中,ChatGPT(OpenAI)、DeepSeek(中国团队研发)和Grok(xAI,ElonMusk旗下公司)是当前三大具有代表性的AI语言模型。它们在技术架构、应用场景、用户体验、生态开放性等多个维度各具特色,并针对不同的用户需
- 【go从入门到精通】探秘struct结构体转json为什么需要首字母大写?
前网易架构师-高司机
golang从入门到精通golangjsongo结构体首字母大写golang从入门到精通go从入门到精通
目录作者简介:问题抛出分析结论作者简介:高科,先后在IBMPlatformComputing从事网格计算,淘米网,网易从事游戏服务器开发,拥有丰富的C++,go等语言开发经验,mysql,mongo,redis等数据库,设计模式和网络库开发经验,对战棋类,回合制,moba类页游,手游有丰富的架构设计和开发经验。并且深耕深度学习和数据集训练,提供商业化的视觉人工智能检测和预警系统(煤矿,工厂,制造业
- 为什么转行大模型行业?深度解析职业变革与技术红利
大模型入门教程
大模型学习语言模型人工智能AI大模型程序员大模型入门
引言2023年ChatGPT的爆发式发展,标志着AI大模型技术正式进入大众视野。这一技术不仅重塑了人工智能的边界,更催生了全新的职业赛道。从传统算法工程师到互联网从业者,越来越多的人开始将目光投向大模型领域。本文将深入探讨这一现象背后的核心动因,并结合行业现状、技术趋势与职业发展路径,为从业者提供系统性分析。一、行业变革:传统岗位萎缩与大模型崛起传统技术岗位的困境以推荐算法为例,随着移动互联网流量
- DeepSeek 与云原生后端:AI 赋能现代应用架构
一ge科研小菜菜
后端人工智能后端
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注1.引言在当今快速发展的互联网时代,云原生(CloudNative)架构已成为后端开发的主流趋势。云原生后端的核心目标是利用云计算的弹性、可扩展性和高可用性,为现代应用提供稳定可靠的后端支持。而人工智能(AI)技术的发展,使得智能化成为云原生后端的新趋势。DeepSeek作为新一代AI技术,在云原生后端的自动化运维、智能资源调度、安全增强和高效数
- AI 大模型应用数据中心建设:高性能计算与存储架构
AI智能涌现深度研究
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
AI大模型、数据中心、高性能计算、存储架构、分布式训练、GPU加速、数据管理1.背景介绍近年来,人工智能(AI)技术取得了飞速发展,特别是深度学习模型的突破性进展,催生了一系列基于大规模数据训练的强大AI模型,例如GPT-3、BERT、DALL-E等。这些AI大模型在自然语言处理、计算机视觉、语音识别等领域展现出强大的应用潜力,但也对计算资源和数据存储提出了极高的要求。传统的计算架构难以满足AI大
- 人工智能直通车系列24【机器学习基础】(机器学习模型评估指标(回归))
浪九天
人工智能直通车开发语言python机器学习深度学习神经网络人工智能
目录机器学习模型评估指标(回归)1.均方误差(MeanSquaredError,MSE)2.均方根误差(RootMeanSquaredError,RMSE)3.平均绝对误差(MeanAbsoluteError,MAE)4.决定系数(CoefficientofDetermination,R2)机器学习模型评估指标(回归)1.均方误差(MeanSquaredError,MSE)详细解释均方误差是回归问
- 国央企AI落地:以智能客服系统为突破口的详细实施方案探讨
数商云网络
B2B系统数字化电商平台人工智能大数据架构java微服务spring
一、引言随着人工智能(AI)技术的飞速发展和广泛应用,国央企作为国民经济的重要支柱,正积极探索AI技术在企业管理、业务运营等方面的应用。智能客服系统作为AI技术的一个重要应用领域,具有提升服务效率、增强用户体验、降低运营成本等显著优势,成为国央企AI落地的重要突破口。本文将详细探讨国央企如何以智能客服系统为突破口,实施AI技术的落地应用,并结合数商云在智能客服系统领域的实践经验,为国央企提供一套切
- CSDN社区,到底该不该用DeepSeek AI生成文章?
Small踢倒coffee_氕氘氚
python经验分享
##引言在当今数字化时代,人工智能(AI)技术正以惊人的速度发展,逐渐渗透到各个行业和领域。作为AI技术的一个重要分支,自然语言处理(NLP)在内容创作、文本生成等方面展现出了巨大的潜力。DeepSeekAI作为一款先进的AI写作工具,能够自动生成高质量的文章,极大地提高了内容创作的效率。然而,随着AI生成内容的普及,CSDN社区中的开发者、技术爱好者和内容创作者们开始思考一个问题:我们到底该不该
- AI大模型从入门到精通,2025终极指南!好卷啊,又不能躺平,只能悄悄卷你们了!
大模型教程
人工智能大模型训练LLM知识库大模型大模型入门大模型学习
什么是AI大模型?AI大模型是指使用大规模数据和强大的计算能力训练出来的人工智能模型。这些模型通常具有高度的准确性和泛化能力,可以应用于各种领域,如自然语言处理、图像识别、语音识别等。为什么要学AI大模型?2024人工智能大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用,大模型作为其中的重要组成部分,正逐渐成为推动人工智能发展的重要引擎。大模型以其强大的数据处理和模式识别能力,广泛应用于
- AI大模型学习路线:从入门到精通的完整指南【2025最新】
AI大模型-大飞
人工智能学习大模型LLMAI程序员大模型学习
引言近年来,以GPT、BERT、LLaMA等为代表的AI大模型彻底改变了人工智能领域的技术格局。它们不仅在自然语言处理(NLP)任务中表现卓越,还在计算机视觉、多模态交互等领域展现出巨大潜力。本文旨在为开发者、研究者和技术爱好者提供一条清晰的学习路径,帮助读者逐步掌握大模型的核心技术并实现实际应用。一、基础阶段:构建知识体系数学与理论基础线性代数:矩阵运算、特征值与奇异值分解是大模型参数优化的基础
- Python与Web 3.0:重新定义数字身份验证的未来
Echo_Wish
Python!实战!python前端开发语言
Python与Web3.0:重新定义数字身份验证的未来随着Web3.0的迅猛发展,传统的身份验证方式正面临越来越大的挑战。从依赖中心化服务器存储用户数据,到如今去中心化、用户掌控数据的新时代,身份验证系统经历了前所未有的变革。而作为一个人工智能、区块链和Python技术的深度爱好者,我认为Python将成为构建Web3.0身份验证系统的重要工具。今天,我们就来聊聊如何结合Python与Web3.0
- 大模型和数据要素赋能实体零售行业数字化转型建设和实施方案
优享智库
大模型数据要素数据治理数据仓库主数据零售
大模型和数据要素赋能实体零售行业数字化转型建设和实施方案更多参考公众号:优享智库引言项目背景与意义数字化转型目标与期望实施方案概述零售行业现状及挑战实体零售行业现状数字化转型面临的挑战市场需求与趋势分析大模型与数据要素赋能策略大模型技术及应用场景数据要素采集、整合与治理赋能策略制定与实施路径数字化转型关键技术与解决方案人工智能技术及应用大数据分析与挖掘技术云计算、物联网等技术支持定制化解决方案设计
- 从LLM出发:由浅入深探索AI开发的全流程与简单实践(全文3w字)
码事漫谈
AI人工智能
文章目录第一部分:AI开发的背景与历史1.1人工智能的起源与发展1.2神经网络与深度学习的崛起1.3Transformer架构与LLM的兴起1.4当前AI开发的现状与趋势第二部分:AI开发的核心技术2.1机器学习:AI的基础2.1.1机器学习的类型2.1.2机器学习的流程2.2深度学习:机器学习的进阶2.2.1神经网络基础2.2.2深度学习的关键架构2.3Transformer架构:现代LLM的核
- 我们的AI人工智能,自动发布了一篇假新闻……
数据断案
数据人的故事人工智能数据库sqloracle数据分析
今天这个故事,还得从一个事故开始说起。前些日子,我们被XX公司投诉,说我们的资讯发布了关于他们公司授信额度的不实报道:告诉我们这篇资讯与他们公司最新公开披露的数据不一致,相关内容并不属实,可能对广大网友们造成严重误导,并对他们公司造成了严重负面影响……balabala一堆指责,并要求我们3小时内删除全部相关信息。然后,他们丢了2篇公告附件过来。我们对照着仔细一看,还真是我们搞错了:由于数据错误,“
- 深入解析两大AI模型的架构与功能
草莓屁屁我不吃
人工智能chatgpt
在人工智能(AI)领域,自然语言处理(NLP)一直是研究的热点之一。随着技术的不断进步,我们见证了从简单的聊天机器人到复杂语言模型的演变。其中,Google的Gemini和OpenAI的ChatGPT作为两大代表性模型,各自在技术和应用上展现出了卓越的性能。本文将详细解析Gemini和ChatGPT的系统架构、功能特性及其背后的技术原理。Gemini模型详解技术背景与架构Gemini,顾名思义,意
- 建立高质量个人数据库:解锁DeepSeek的关键
CodeJourney.
人工智能算法python
在人工智能飞速发展的时代,DeepSeek为普通人处理数据、提升工作效率带来了新的可能。然而,很多人在使用过程中存在误区,本文围绕如何正确利用DeepSeek搭建高质量个人数据库展开探讨,强调其对个人成长和发展的重要性,并通过具体实例展示其强大功能。重新理解DeepSeekDeepSeek的普及使普通人能够轻松搭建个人数据库,但不少人在使用时存在错误认知。他们将DeepSeek视为主角,把杂乱无章
- 如何减少跨团队交付摩擦?——基于 DevOps 与敏捷的最佳实践
网罗开发
实战实战源码devops运维
网罗开发(小红书、快手、视频号同名) 大家好,我是展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、HarmonyOS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。图书作者:《ESP32-C3物联网工程开发实战》图书作者:《SwiftUI入门,进阶与实战》超级个体:CO
- 展望 AIGC 前景:通义万相 2.1 与蓝耘智算平台共筑 AI 生产力高地
accurater
AIGC人工智能神经网络深度学习
喜欢可以到主页订阅专栏引言人工智能生成内容(AIGC)技术正在重塑内容创作、影视制作、广告设计等行业的底层逻辑。作为该领域的革命性技术代表,通义万相2.1凭借其开源特性、多模态生成能力和技术突破,成为全球视频生成模型的标杆。而蓝耘智算平台则通过高性能算力支持与分布式架构优化,为AIGC技术的规模化应用提供了基础设施保障。两者的协同不仅推动了AI生产力的跃迁,更开启了从技术研发到商业落地的全链条创新
- Python编码系列—Python代码重构:提升代码质量
学步_技术
Python编码python重构开发语言
欢迎来到我的技术小筑,一个专为技术探索者打造的交流空间。在这里,我们不仅分享代码的智慧,还探讨技术的深度与广度。无论您是资深开发者还是技术新手,这里都有一片属于您的天空。让我们在知识的海洋中一起航行,共同成长,探索技术的无限可能。探索专栏:学步_技术的首页——持续学习,不断进步,让学习成为我们共同的习惯,让总结成为我们前进的动力。技术导航:人工智能:深入探讨人工智能领域核心技术。自动驾驶:分享自动
- 【人工智能】Model Context Protocol (MCP) 是一个开放协议,标准化了应用程序向大型语言模型(LLMs)提供上下文的方式
本本本添哥
013-AIGC人工智能大模型人工智能语言模型php
一、ModelContextProtocol(MCP)概述MCP,ModelContextProtocolMCP,是一个开放协议。MCP,标准化了应用程序向大型语言模型(LLMs)提供上下文的方式。MCP,旨在标准化应用程序如何为大型语言模型(LLM)提供上下文信息。MCP,提供了一个标准的接口,使得LLM可以无缝集成各种外部数据源和工具,从而扩展其能力和应用场景。二、MCP的定义和作用MCP定
- 从零开始大模型开发与微调:PyCharm的下载与安装
AI天才研究院
AI大模型企业级应用开发实战AI大模型应用入门实战与进阶DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
从零开始大模型开发与微调:PyCharm的下载与安装1.背景介绍随着人工智能和深度学习技术的不断发展,大型语言模型(LargeLanguageModels,LLMs)已经成为当前最引人注目的研究热点之一。LLMs能够在各种自然语言处理任务上展现出惊人的性能,例如机器翻译、文本生成、问答系统等。PyTorch和TensorFlow等深度学习框架为训练和微调大型语言模型提供了强大的支持。PyCharm
- PyTorch从入门到精通:探索深度学习新境界
lmtealily
深度学习pytorch人工智能
引言PyTorch作为当前最受欢迎的深度学习框架之一,凭借其动态计算图的独特设计和与Python生态的无缝集成,正重塑着人工智能开发的新范式1。从NVIDIA的研究实践到Meta的产业应用,PyTorch的价值已渗透至学术研究、工业部署的每个角落。本文将带领您从张量操作基础开始,逐步探索GPU加速、动态图机制、框架生态集成等高级主题,最终实现理论与实战的双重突破。一、PyTorch核心基础构建1.
- 【Python】已解决:pip安装第三方模块(库)与PyCharm中不同步的问题(PyCharm添加本地python解释器)
屿小夏
pythonpippycharm
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,