- 【PyTorch】torch.nn.functional.cross_entropy() 函数:分类任务的交叉熵损失函数
彬彬侠
PyTorch基础cross_entropy交叉熵损失函数分类pytorchpython深度学习
torch.nn.functional.cross_entropytorch.nn.functional.cross_entropy是PyTorch中用于分类任务的交叉熵损失函数,用于衡量预测概率分布与真实类别分布之间的差异,常用于多分类任务(multi-classclassification)。1.交叉熵损失的数学公式对于单个样本,交叉熵损失的计算公式为:L=−∑i=1Cyilog(yi^)\
- 数学中常用的求导数的公式汇总
彬彬侠
数学基础机器学习
一、基本求导公式常数函数的导数ddx[c]=0\frac{d}{dx}[c]=0dxd[c]=0其中ccc是常数。幂函数的导数ddx[xn]=nxn−1\frac{d}{dx}[x^n]=nx^{n-1}dxd[xn]=nxn−1其中nnn是实数。指数函数的导数自然指数函数:ddx[ex]=ex\frac{d}{dx}[e^{x}]=e^{x}dxd[ex]=ex一般指数函数:ddx[ax]=ax
- 【Python】全局解释器锁(Global Interpreter Lock,GIL)
彬彬侠
Python基础全局解释器锁GILCPython多进程C扩展python
全局解释器锁(GlobalInterpreterLock,简称GIL)是CPython(Python的标准实现)中的一个机制,它确保同一时刻只有一个线程在执行Python字节码。GIL的主要作用是保护Python内部的数据结构,避免多线程访问共享数据时发生竞争条件,导致数据损坏。GIL的工作原理在Python的多线程环境中,GIL会限制多个线程同时执行Python字节码。尽管操作系统可以调度多个线
- Spring Cloud 与微服务学习总结(14)—— 云原生时代,如何从 Java 开发者转型微服务?
一杯甜酒
SpringCloud与微服务java云原生springcloud微服务微服务架构
前言根据维基百科定义,微服务不是整体应用程序中的一个层。相反,微服务是一个独立的业务功能,具有清晰的接口,并且可以通过内部组件实现分层架构。从战略角度来看,微服务架构基本上遵循“做一件事,就要做得好”的Unix哲学。为了应对传统单体架构的缺陷,微服务架构被企业广泛应用。然而,实践之前有很多问题都需要提前考虑清楚,比如Java背景的开发者是否更有优势?微服务、容器化、DevOps和CI/CD之间的关
- 《基于单片机的交通灯设计与实现(附论文+源代码)》
Blossom.118
单片机课程设计系列单片机嵌入式硬件单片机课程设计51单片机工科软硬件技术stm32c++
1、项目背景交通灯控制系统是城市交通管理的重要组成部分,其作用是合理分配道路资源,缓解交通拥堵,保障行人和车辆的安全。传统的交通灯系统多为固定时长控制,而基于单片机的交通灯控制系统可以通过编程实现更灵活的控制逻辑,例如根据车流量调整信号时长,甚至实现智能交通管理。2、设计思想交通灯设计是以单片机AT89C51芯片作为核心原件,LED灯、八段数码管等构成交通灯显示系统,利用单片机的电源电路、时钟电路
- 101、探索Rust模式匹配的奥秘:简洁代码的艺术
多多的编程笔记
Rust之Web开发rust开发语言后端
Rust模式匹配:学会使用match表达式进行模式匹配,了解iflet和whilelet的用法在编程中,我们经常需要根据不同的条件来执行不同的代码块。Rust语言提供了丰富的模式匹配机制,使得这种根据条件分支执行代码变得简单而直观。本文将介绍Rust中的模式匹配,重点讲解match表达式,以及iflet和whilelet的用法。一、Match表达式Match表达式是Rust中进行模式匹配的一种机制
- 深度学习在医疗影像诊断中的应用与实现
Evaporator Core
#DeepSeek快速入门人工智能#深度学习深度学习人工智能
引言随着人工智能技术的快速发展,深度学习在医疗领域的应用日益广泛,尤其是在医疗影像诊断方面。医疗影像数据量大、复杂度高,传统的诊断方法往往依赖于医生的经验,容易受到主观因素的影响。而深度学习通过自动学习特征,能够从海量数据中提取出有用的信息,辅助医生进行更精准的诊断。本文将探讨深度学习在医疗影像诊断中的应用,并通过代码示例展示如何实现一个简单的医疗影像分类模型。深度学习在医疗影像诊断中的应用1.图
- PINN物理信息网络 | 基于物理信息神经网络PINN求解Burger方程
算法如诗
物理信息网络(PINN)神经网络人工智能深度学习物理信息网络
基于物理信息神经网络(PINN)求解Burger方程的研究背景源于对非线性偏微分方程(PDE)求解方法的不断探索和改进。传统的数值方法,如有限差分法和有限元法,通常需要进行网格离散化和迭代求解,对于复杂的非线性问题计算成本较高。因此,研究人员开始探索基于机器学习和神经网络的新方法来求解PDEs。神经网络在近年来取得了显著的发展,能够通过学习大量数据来建立输入和输出之间的复杂映射关系。然而,将神经网
- PINN物理信息网络 | 利用物理信息神经网络进行流体动力学建模
算法如诗
物理信息网络(PINN)神经网络机器学习人工智能流体动力学建模PINN物理信息网络
背景物理信息神经网络(Physics-InformedNeuralNetworks,PINN)是一种结合了神经网络和物理方程的方法,用于建模和求解物理问题。传统的基于物理方程的数值方法在处理复杂的非线性偏微分方程时可能面临数值稳定性、高计算复杂度和网格依赖性等问题。而PINN作为一种数据驱动的方法,通过使用神经网络来近似物理方程,能够有效地解决这些问题。在流体动力学建模中,PINN可以应用于求解N
- TPAMI 2025 | Glissando-Net: 基于单视图的类别级姿态估计与3D重建
小白学视觉
论文解读IEEETPAMI3d深度学习论文解读顶刊论文IEEETPAMI
论文信息Glissando-Net:DeepSinglevIewCategoryLevelPoseeStimationANd3DReconstructionGlissando-Net:基于单视图的类别级姿态估计与3D重建作者:BoSun;HaoKang;LiGuan;HaoxiangLi;PhilipposMordohai;GangHua论文创新点联合估计3D形状和6D姿态:Glissando-N
- C++调用Python程序方法
超级大反派@_@
C++c++python开发语言
前言:在之前做的一个项目中,要使用一段Python的代码。一般来讲可以将Python代码中的功能在C++项目中重构,但是如果Python项目太大,或者这部分是别人写的,自己不清楚整个项目的逻辑,这样重构起来就比较麻烦。这里给出了另外一种实现方法,即利用Python的API使得C++项目可以直接启动Python程序,快速在PC端验证代码功能。急性子可直接看:2.2C++调用python有参有返回值函
- C# Type类中Name、FullName、Namespace、AssemblyQualifiedName的区别
鲤籽鲲
C#c#microsoft开发语言C#知识捡漏
总目录前言在C#中,Type类提供了多种属性来获取类型的相关信息。以下是Name、FullName、Namespace和AssemblyQualifiedName这几个属性的区别和具体用途。一、获取各名称属性示例namespaceReflectionDemo{publicclassUser{}internalclassProgram{staticvoidMain(string[]args){var
- 图神经网络学习笔记—高级小批量处理(专题十四)
AI专题精讲
图神经网络入门到精通人工智能
小批量(mini-batch)的创建对于让深度学习模型的训练扩展到海量数据至关重要。与逐条处理样本不同,小批量将一组样本组合成一个统一的表示形式,从而可以高效地并行处理。在图像或语言领域,这一过程通常通过将每个样本缩放或填充为相同大小的形状来实现,然后将样本在一个额外的维度中分组。该维度的长度等于小批量中分组的样本数量,通常称为batch_size。由于图是能够容纳任意数量节点或边的最通用的数据结
- 北本海硕腾讯二面没过,该如何准备才能再战大厂?
程序员yt
面试
今天给大家分享的是一位粉丝的提问,北本海硕腾讯二面没过,该如何准备才能再战大厂?接下来把粉丝的具体提问和我的回复分享给大家,希望也能给一些类似情况的小伙伴一些启发和帮助。同学提问:bg北本海硕两段大厂实习,感觉自己bg其实不错但问题是实习干的都是些crud当时也没意识记录一些更深刻的技术或者架构上的问题,八股又欠背(大致看完了小林codinga和csguilde的c++指北但实际中延伸出来的问题太
- 西电计科保研无望无实习无竞赛无科研,该考研还是直接就业?
程序员yt
考研
今天给大家分享的是一位粉丝的提问,西电计科保研无望无实习无竞赛无科研,该考研还是直接就业?接下来把粉丝的具体提问和我的回复分享给大家,希望也能给一些类似情况的小伙伴一些启发和帮助。同学提问:您好,请问西电计科学生,保研无望,无实习无竞赛无科研无技术栈,是准备考研呢,还是准备就业,本科均分80,感觉准备考研就没有后路了。Yt回答:作为一个西电计科,计算机科班生,保研无望,无实习无竞赛无科研无技术也没
- 1985-2024年地级市人工智能专利数据
经管数据库
人工智能
《地级市人工智能专利数据(1985-2024)》于2025年1月完成最新更新。数据聚焦于中国各地级市,时间跨度设定为1985年至2024年。在数据整理过程中,参照《关键数字技术专利分类体系(2023)》,依据其中“人工智能”类技术的专利分类号,结合国家知识产权局所提供的信息,对各地每年的专利申请展开搜索与匹配。在此基础上,从众多专利申请中精准筛选出属于“人工智能”类别的专利,并进行数量统计,数据涵
- YOLOv12模型详解及代码复现
清风AI
深度学习算法详解及代码复现计算机视觉YOLO人工智能机器学习神经网络python算法
算法背景在计算机视觉领域不断发展壮大的背景下,YOLOv12算法应运而生。这一突破性成果源自JosephRedmon和AliFarhadi等研究人员在华盛顿大学的开创性工作。他们的目标是解决实时物体检测这一关键问题,在速度和精度之间寻求最佳平衡。YOLOv12延续了前作YOLOv1的成功理念,将其定位为一种回归问题,而非传统的区域提议+分类方法。这种创新方法不仅简化了整个检测过程,还显著提高了处理
- YOLOv8涨点大全总结(源码)
清风AI
深度学习YOLO计算机视觉神经网络人工智能python
(需要全部源码请私信或留言)性能指标在探讨YOLOv8的性能提升之前,我们需要明确评估其性能的主要指标。这些指标不仅是衡量模型优劣的标准,也是后续改进工作的出发点。常见的性能指标包括:指标名称含义mAP5050%交并比阈值下的平均精度mAP50-9550-95%交并比阈值范围内,步长为5%的平均精度Precision预测正确的正样本占总预测正样本的比例Recall预测正确的正样本占实际正样本总数的
- 医学文本分析中的命名实体识别:从理论到实践
软件职业规划
语言模型unity人工智能
1.数据预处理数据预处理是医学命名实体识别系统的基础步骤,其质量直接影响模型的训练效果和最终性能。数据预处理主要包括医学文本的标注、清洗以及数据增强三个方面。1.1医学文本的标注标注是数据预处理中的关键环节,其目的是将医学文本中的实体明确标记出来,以便模型能够学习到实体的特征和边界。标注的方式通常采用BIO标注法。1.1.1BIO标注法BIO标注法是一种广泛应用于命名实体识别任务的标注方式,它通过
- Rust语言基础知识详解【八】
学习两年半的Javaer
rustrust
继上一章对rust复合类型中的数组和元组讲解之后,接下来对结构体进行详细的介绍。结构体跟之前讲过的元组有些相像:都是由多种类型组合而成。但是与元组不同的是,结构体可以为内部的每个字段起一个富有含义的名称。因此结构体更加灵活更加强大,你无需依赖这些字段的顺序来访问和解析它们。结构体语法天下无敌的剑士往往也因为他有一柄无双之剑,既然结构体这么强大,那么我们就需要给它配套一套强大的语法,让用户能更好的驾
- 每天五分钟玩转深度学习PyTorch:基于GoogLeNet完成CAFIR10分类
每天五分钟玩转人工智能
深度学习框架pytorch深度学习pytorch分类GoogLeNet人工智能CAFIR10
本文重点前面我们终于使用pytorch搭建了GoogLeNet,本文我们使用该网络模型解决一个实际问题,也就是使用它完成CAFIR10分类,其实就这些任务而言,我们只要搭建好模型,然后把数据喂进去就行了,其它的地方都是一样的,就是网络模型不一样。代码
- 【零基础JavaScript入门 | Day1】从“消费记账“案例学编程基础 ⭐表格制作+数据类型转换全解析
helbyYoung
JavaScrip学习javascript学习
【零基础JavaScript入门|Day1】从"消费记账"案例学编程基础⭐表格制作+数据类型转换全解析今日学习重点:✅数据与现实的映射关系→网页表格如何承载生活数据✅变量容器的本质→用let管理三大消费支出✅隐式类型转换技巧→+prompt()输入处理的妙用✅模板字符串实战→动态生成消费报表案例亮点:1️⃣用户交互三部曲:通过prompt()实现饮食/交通/娱乐费用的分步输入2️⃣自动统计系统:t
- 主流架构模式全景解析:微服务 vs SOA vs 单体架构的终极抉择指南
Eqwaak00
分布式系统设计实战科技微服务架构
一、架构演进史:从巨石到微粒的进化之路(图示:1970s单体→2000sSOA→2010s微服务→2020s云原生)二、三大架构模式深度拆解2.1单体架构(MonolithicArchitecture)核心特征graphTDA[单体应用]-->B[用户界面]A-->C[业务逻辑]A-->D[数据访问]B-->E[Web/移动端]C-->F[订单处理]C-->G[支付处理]D-->H[MySQL]D
- C# Dictionary使用详解
Daniel的万事通杂货铺
Winform应用开发c#开发语言
在C#中,Dictionary是一个非常常用的数据结构,用于存储键值对。Dictionary类实现了IDictionary接口,并且提供了许多有用的方法和属性来操作键值对集合。下面是一些关于如何使用Dictionary的详细说明:1.基本用法创建DictionaryCsharp深色版本1DictionarymyDictionary=newDictionary();或者使用字面量语法:Csharp深
- vscode中调试Python和C++的混合代码
destiny44123
vscodepythonc++
文章目录使用流程参考一些差异使用流程参考ExampledebuggingmixedPythonC++inVSCode一些差异这里假设的项目是通过python调用c++的相应共享库(so)文件。首先,新建文件夹.vscode,在其中添加文件配置launch.json.示例如下:{"version":"0.2.0","configurations":[{"name":"(gdb)附加","type":
- LLM推理和优化(1):基本概念介绍
AndrewHZ
AI算法工程师面试指北算法LLM语言模型推理优化KVCacheDeepSeek注意力机制
一、LLM推理的核心过程:自回归生成LLM(如DeepSeek、ChatGPT、LLaMA系列等)的推理本质是自回归生成:从初始输入(如[CLS]或用户prompt)开始,逐token预测下一个词,直到生成结束符(如[EOS])。其核心分为两个阶段:1.Initialization阶段(初始化)目标:准备第一个token的生成条件。关键步骤:输入编码:将初始prompt转换为token序列(如[C
- Deepseek:物理神经网络PINN入门教程
天一生水water
神经网络人工智能深度学习
一、物理信息网络(PINN)的概念与原理1.定义与来源物理信息网络(Physics-InformedNeuralNetworks,PINN)是一种将物理定律(如偏微分方程、守恒定律等)嵌入神经网络训练过程的深度学习方法。其核心思想是通过神经网络同时拟合观测数据并满足物理约束,从而解决传统数值方法难以处理的高维、噪声数据或复杂边界条件问题。来源:PINN起源于对传统数值方法局限性的改进需求(如网格生
- C++:std::vector常用函数及用法详解
湫兮之风
c++c++算法开发语言
std::vector是C++标准库中最常用的动态数组容器,提供了丰富的操作方法,支持动态扩展、插入、删除等操作。本文将详细介绍vector的常用函数及其用法,并配合代码示例说明。1.std::vector的基本使用在C++中,vector需要包含头文件:#include示例:#include#includeintmain(){std::vectorvec={1,2,3,4,5};for(intn
- 工程化与框架系列(32)--前端测试实践指南
一进制ᅟᅠ
前端工程化与框架前端
前端测试实践指南引言前端测试是保证应用质量的重要环节。本文将深入探讨前端测试的各个方面,包括单元测试、集成测试、端到端测试等,并提供实用的测试工具和最佳实践。测试概述前端测试主要包括以下类型:单元测试:测试独立组件和函数集成测试:测试多个组件的交互端到端测试:模拟用户行为的完整测试性能测试:测试应用性能指标快照测试:UI组件的视觉回归测试测试工具实现测试运行器//测试运行器类classTestRu
- 掌握Rust模式匹配:从基础语法到实际应用
GTokenTool发币平台
rust开发语言后端
本篇文章将探讨Rust编程语言中至关重要的特性之一——模式匹配。Rust语言的模式匹配功能强大,不仅能处理简单的值匹配,还能解构和操作复杂的数据结构。通过深入学习模式匹配,程序员可以更加高效地编写出清晰、简洁且易于维护的代码。Rust语言中的模式匹配是一种特殊的语法结构,用于匹配变量、解构数组、结构体、枚举和元组等。本文主要介绍了Rust中各种模式的使用场景,包括match、iflet、while
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文