手把手带你实现SDRAM控制器(带Verilog代码)

        上篇博客,我们了解了SDRAM的控制命令以及寻址方式,SDRAM芯片需要配合专门的控制电路使用才能发挥功能,这一节我们将一步步分析,使用Verilog搭建一个SDRAM驱动控制器。

目录

  学习目标

  问题分析

初始化模块

信息收集

模块接口确定 

状态机设计

仿真测试

Modelsim仿真:


  学习目标

  • 搭建SDRAM控制器,能读,能写,并且可以自动初始化以及自动刷新。
  • 学习分析问题和使用Verilog解决问题的方法。

  问题分析

          数字系统自顶向下的的设计原则,我们首先可以分析目标中的功能。不难看出SDRAM控制器应该包含以下模块:

  1. 初始化模块
  2. 读控制模块
  3. 写控制模块 
  4. 自动刷新模块      

        各个模块将复用SDRAM顶层模块的输出接口,因此将会存在一个总线仲裁的问题,例如当自刷新模块和读模块同时发出请求时,而我们只能响应其中一个,所以我们解决把输出接口交给谁的问题,因此引出第五个模块:仲裁模块。

        为了验证设计的需要,我们设计的模块接口兼容野火电子的测试平台接口,各部分关系图如下:

手把手带你实现SDRAM控制器(带Verilog代码)_第1张图片

初始化模块

        SDRAM在上电之后,在执行正常操作之前需要先执行一次初始化操作。

手把手带你实现SDRAM控制器(带Verilog代码)_第2张图片

         初始化的流程都是固定的,查看参考手册给的信息可以确定初始化需要顺序执行以下操作:

  1. 给SDRAM上电,CKE设置为高电平,加载稳定的时钟。
  2. 执行空指令,并且持续100us
  3. 100us过后执行预充电指令,并选中所有Bank(A10为高电平)。
  4. 预充电指令写入后,等待tRP时间,写入自动刷新命令
  5. 之后保持空命令持续tRC时间
  6. tRC时间过后,在此写入自动刷新命令
  7. 自动刷新命令写入后,写入空操作命令持续tRC时间
  8. 等待时间结束后,即可写入模式寄存器配置指令,地址总线 A0-A11 参数不同 辅助模式寄存器不同模式的设置。
  9. 模式寄存器配置指令写入后,还需要保持空操 作命令持续 tMRD 时间
  10. tMRD时间过后,SDRAM初始化即完成

         观察上述步骤,我们的脑海中肯定一直回荡着:计数器~、状态机~ ,对的,是这样的,完全没错!这个模块的设计主要就是围绕 状态机,佐以计数器。

        抛开状态机细节不谈,我们下一步应该要收集我们需要的资料信息:

信息收集

  • 时钟资源:100MHz系统时钟,一个周期就是10us
  • T=100us 为最小等待时间,我们在使用 SDRAM 时,等待时间 T 可适当延长,设定为200us。
  • 开发板的SDRAM信号为W9825G6KH,tRP为两个时钟周期,tMRD3个时钟周期,tRC7个时钟周期。
  • 初始化过程中,至少进行两次自动刷新,也可适当增加刷新次数,设定为8次。
  • 使用的命令集:NOP=4‘b0111,P_CHARGE=4’b0010,AUTO_REF = 4'b0001,M_REG_SET= 4'b0000。

模块接口确定 

手把手带你实现SDRAM控制器(带Verilog代码)_第3张图片

         本状态机属于穆尔型状态机,时钟和复位接口作为仅有的两个输入,输出则根据SDRAM命令集接口有 init_cmd (4bit) 、init_ba(Bank辅助,2bit),init_addr(地址辅助,13bit),init_end(完成信号,1bit)

状态机设计

        状态机的设计有三大要素需要考虑:1、状态数目,2、状态转移条件,3、状态输出。

首先我们要设计出状态的数目,我们可以由前面的初始化步骤画出我们的状态转移图:

手把手带你实现SDRAM控制器(带Verilog代码)_第4张图片

        平板太滑了,展现不出本人的书法水平,所以大家将就着看。 

可以看到,我们的状态机可以设计9个状态去实现它,可能有同学会问,为什么等待状态也要设置好几个不同的状态呀?能不能只设计一个?这是个好问题,其实这四个等待状态就相当于一个等待状态,我们的计数器也只设计一个,然后每个状态会传递不同的计数周期参数,并在计数完成时清零。当然也不是不可以每个状态设计一个计数器,这样代码会简单很多,其实我也建议大家这样做,我觉得Verilog代码设计思路越简单越好,不要像带着C语言那样一个main走天下的思路去写Verilog。

        接下来就是代码实现:

// 刷新模块 New_Designed By BUCT WWD 2022/9/7
// SDRAM初始化模块,初始化步骤:上电--延时200us--预充电--刷新x8--寄存器设定--完成

module sdram_init(
input wire sys_clk, //系统时钟信号
input wire sys_rst_n,//系统复位信号

output wire[1:0] init_ba, //Bank辅助位
output wire[3:0] init_cmd,//命令位
output wire[12:0] init_addr,//地址辅助位
output wire init_end //初始化结束标志
);
parameter IDLE = 4'd0,Wait1 = 4'd1,P_CHAR = 4'd2,Wait2 =4'd3,Auto_REF=4'd4,Wait3=4'd5,MRS=4'd6,Wait4=4'd7,OK=4'd8;//九个状态
parameter Init_t = 15'd20000,//初始化200us,各项等待参数
		  TRP_t  = 15'd2, 
		  TRC_t  = 15'd7,
		  TMRD_t = 15'd3;
		  
parameter P_CHARGE = 4'b0010, //指令集
		  Au_REF = 4'b0001,
		  NOP = 4'b0111,
		  M_REG_SET = 4'b0000;
parameter REF_TIME = 4'd8; //自刷新次数参数
reg[3:0] state,next_state;
reg[14:0] cnt_now; //延时长度寄存器
reg[14:0] cnt_value; //计时计数器值
reg[3:0] REF_cnt; //刷新计数

reg[1:0] init_ba_reg; 
reg[3:0] init_cmd_reg;
reg[12:0] init_addr_reg;
reg init_end_reg;


always@(posedge sys_clk or negedge sys_rst_n)begin//状态转移
if(sys_rst_n ==1'b0)
	state <= IDLE;
	else
	state <= next_state;
end

always@(posedge sys_clk or negedge sys_rst_n)begin//计时器模块
	if(sys_rst_n ==1'b0)
	cnt_value <= 15'd0;
	else if(cnt_value == cnt_now)//计满自动清零
	cnt_value <= 15'd0;
	else
	cnt_value <= cnt_value +15'd1;
end


always@(posedge sys_clk or negedge sys_rst_n)begin  //刷新次数计数器
	if(sys_rst_n ==1'b0)
		REF_cnt <= 4'd0;
	else if((REF_cnt == REF_TIME)&&(cnt_value == 15'd7))
		REF_cnt <= 4'd0;
	else if(next_state==Auto_REF)
		REF_cnt <= REF_cnt + 4'd1;
	else
		REF_cnt <= REF_cnt;
end


always@(*)begin  //状态转移判断模块,根据计时时间判断是否已经持续相应时间长度
if(sys_rst_n ==1'b0)begin
	next_state = IDLE;
end else begin
	case(state)
	IDLE: next_state = Wait1;
	Wait1:if(cnt_value == cnt_now)
		next_state = P_CHAR;
		else
		next_state = state;
	P_CHAR:next_state = Wait2;
	Wait2:if(cnt_value == cnt_now)
		next_state = Auto_REF;
		else
		next_state = state;
	Auto_REF:next_state = Wait3;
	Wait3:if((REF_cnt == REF_TIME)&&(cnt_value == cnt_now))//自刷新的转移条件还要满足重复次数
		next_state = MRS;
		else if(cnt_value == cnt_now)
		next_state = Auto_REF;
		else
		next_state = state;
	MRS:next_state = Wait4;
	Wait4:if(cnt_value==cnt_now)
		next_state = OK;
		else
		next_state = state;
	OK:	next_state =OK;
	endcase
end
end



always@(posedge sys_clk or negedge sys_rst_n)begin 
/*各个state持续时间只的设定,特点:时序模块,由下一个状态判断,
这样,在切换状态的一瞬间,计数器执行清零操作,目标计数值被重新赋值,这样就实现了延时参数的传递*/
if(sys_rst_n ==1'b0)begin
	cnt_now <= 15'd0;
end else begin
	case(next_state)
	IDLE:cnt_now <= 15'd0;
	Wait1: cnt_now <= Init_t;
	P_CHAR:cnt_now <= 15'd0;
	Wait2:cnt_now <=  TRP_t;
	Auto_REF:cnt_now <= 15'd0;
	Wait3:cnt_now <= TRC_t;
	MRS:cnt_now <= 15'd0;
	Wait4:cnt_now <= TMRD_t;
	OK:cnt_now <=15'd0;
	endcase
end
end

always@(posedge sys_clk or negedge sys_rst_n)begin //输出模块,三段式状态机
if(sys_rst_n == 1'b0)begin
	init_cmd_reg <= NOP;
	init_ba_reg <= 2'b11;
	init_addr_reg <= 13'h1fff;
	init_end_reg <= 1'b0;
end else 
	case(next_state)
	IDLE,Wait1,Wait2,Wait3,Wait4: begin
		init_cmd_reg <= NOP;
		init_ba_reg <= 2'b11;
		init_addr_reg <= 13'h1fff;
	end
	P_CHAR:begin
		init_cmd_reg <= P_CHARGE;
		init_ba_reg <= 2'b11;
		init_addr_reg <= 13'h1fff;
	end
	Auto_REF:begin
    init_cmd_reg <= Au_REF;
    init_ba_reg <= 2'b11;
    init_addr_reg <= 13'h1fff;
    end
	MRS:begin
    init_cmd_reg <= M_REG_SET;
    init_ba_reg <= 2'b00;
    init_addr_reg <=
    { //地址辅助配置模式寄存器,参数不同,配置的模式不同
    3'b000,//A12-A10:预留
    1'b0, //A9=0:读写方式,0:突发读&突发写,1:突发读&单写
    2'b00, //{A8,A7}=00:标准模式,默认
    3'b011,//{A6,A5,A4}=011:CAS 潜伏期,010:2,011:3,其他:保留
    1'b0, //A3=0:突发传输方式,0:顺序,1:隔行
    3'b111 //{A2,A1,A0}=111:突发长度,000:单字节,001:2 字节
    //010:4 字节,011:8 字节,111:整页,其他:保留
    };
    end
	OK:begin
	init_cmd_reg <= NOP;
	init_ba_reg <= 2'b11;
	init_addr_reg <= 13'h1fff;
	init_end_reg <= 1'b1;
	end
	endcase
end

//最后由于输出是线网,因此需要连续赋值
assign init_cmd = init_cmd_reg;
assign init_addr = init_addr_reg;
assign init_ba = init_ba_reg;
assign init_end = init_end_reg;


endmodule

         我写的这个状态机有几个特点,第一采用变量少,第二采用的计数器少,第三逻辑简单,大家可以好好体会一下如何让状态机的状态延长时间的方法。事实上我们可以发现,初始化模块所要求的延时都为时钟周期的整数,并且不会有同时两个延时,整个模块的计数器只有两个:自刷新计数器和延时计数器。我们只需要在每个状态来临时赋给它们相应的计数参数,就可以实现单计数器,多状态共用。

仿真测试

        TB文件

为了验证我们的状态机设计,我们采用野火的验证平台,这次的测试工程共包含三个部分:

  1. sdram_init.v
  2. tb_sdram.v
  3. sdram_model_plus.v //sdram模块模拟
  4. PLL IP核
`timescale  1ns/1ns

// Author        : EmbedFire
// Create Date   : 2019/08/25
// Module Name   : tb_sdram_init
// Project Name  : uart_sdram
// Target Devices: Altera EP4CE10F17C8N
// Tool Versions : Quartus 13.0
// Description   : SDRAM初始化模块仿真
// 
// Revision      : V1.0
// Additional Comments:
// 
// 实验平台: 野火_征途Pro_FPGA开发板
// 公司    : http://www.embedfire.com
// 论坛    : http://www.firebbs.cn
// 淘宝    : https://fire-stm32.taobao.com


module  tb_sdram_init();

//********************************************************************//
//****************** Internal Signal and Defparam ********************//
//********************************************************************//

//wire define
//clk_gen
wire            clk_50m         ;   //PLL输出50M时钟
wire            clk_100m        ;   //PLL输出100M时钟
wire            clk_100m_shift  ;   //PLL输出100M时钟,相位偏移-30deg
wire            locked          ;   //PLL时钟锁定信号
wire            rst_n           ;   //复位信号,低有效
//sdram_init
wire    [3:0]   init_cmd        ;   //初始化阶段指令
wire    [1:0]   init_ba         ;   //初始化阶段L-Bank地址
wire    [12:0]  init_addr       ;   //初始化阶段地址总线
wire            init_end        ;   //初始化完成信号

//reg define
reg             sys_clk         ;   //系统时钟
reg             sys_rst_n       ;   //复位信号

//defparam
//重定义仿真模型中的相关参数
defparam sdram_model_plus_inst.addr_bits = 13;          //地址位宽
defparam sdram_model_plus_inst.data_bits = 16;          //数据位宽
defparam sdram_model_plus_inst.col_bits  = 9;           //列地址位宽
defparam sdram_model_plus_inst.mem_sizes = 2*1024*1024; //L-Bank容量

//********************************************************************//
//**************************** Clk And Rst ***************************//
//********************************************************************//

//时钟、复位信号
initial
  begin
    sys_clk     =   1'b1  ;
    sys_rst_n   <=  1'b0  ;
    #200
    sys_rst_n   <=  1'b1  ;
  end

always  #10 sys_clk = ~sys_clk;

//rst_n:复位信号
assign  rst_n = sys_rst_n & locked;

//********************************************************************//
//*************************** Instantiation **************************//
//********************************************************************//

//------------- clk_gen_inst -------------
clk_gen clk_gen_inst (
    .inclk0     (sys_clk        ),
    .areset     (~sys_rst_n     ),
    .c0         (clk_50m        ),
    .c1         (clk_100m       ),
    .c2         (clk_100m_shift ),

    .locked     (locked         )
);

//------------- sdram_init_inst -------------
sdram_init  sdram_init_inst(

    .sys_clk    (clk_100m   ),
    .sys_rst_n  (rst_n      ),

    .init_cmd   (init_cmd   ),
    .init_ba    (init_ba    ),
    .init_addr  (init_addr  ),
    .init_end   (init_end   )

);

//-------------sdram_model_plus_inst-------------
sdram_model_plus    sdram_model_plus_inst(
    .Dq     (               ),
    .Addr   (init_addr      ),
    .Ba     (init_ba        ),
    .Clk    (clk_100m_shift ),
    .Cke    (1'b1           ),
    .Cs_n   (init_cmd[3]    ),
    .Ras_n  (init_cmd[2]    ),
    .Cas_n  (init_cmd[1]    ),
    .We_n   (init_cmd[0]    ),
    .Dqm    (2'b0           ),
    .Debug  (1'b1           )

);

endmodule

sdram_model 

/***************************************************************************************
作者:	李晟
2003-08-27	V0.1	李晟 
 
 添加内存模块倒空功能,在外部需要创建事件:sdram_r ,本SDRAM的内容将会按Bank 顺序damp out 至文件
 sdram_data.txt 中
×××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××*/
//2004-03-04	陈乃奎	修改原程序中将BANK的数据转存入TXT文件的格式
//2004-03-16	陈乃奎	修改SDRAM 的初始化数据
//2004/04/06	陈乃奎	将SDRAM的操作命令以字符形式表示,以便用MODELSIM监视
//2004/04/19	陈乃奎	修改参数 parameter tAC  =   8;
//2010/09/17	罗瑶	修改sdram的大小,数据位宽,dqm宽度;
/****************************************************************************************
*
*    File Name:  sdram_model.V  
*      Version:  0.0f
*         Date:  July 8th, 1999
*        Model:  BUS Functional
*    Simulator:  Model Technology (PC version 5.2e PE)
*
* Dependencies:  None
*
*       Author:  Son P. Huynh
*        Email:  [email protected]
*        Phone:  (208) 368-3825
*      Company:  Micron Technology, Inc.
*        Model:  sdram_model (1Meg x 16 x 4 Banks)
*
*  Description:  64Mb SDRAM Verilog model
*
*   Limitation:  - Doesn't check for 4096 cycle refresh
*
*         Note:  - Set simulator resolution to "ps" accuracy
*                - Set Debug = 0 to disable $display messages
*
*   Disclaimer:  THESE DESIGNS ARE PROVIDED "AS IS" WITH NO WARRANTY 
*                WHATSOEVER AND MICRON SPECIFICALLY DISCLAIMS ANY 
*                IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR
*                A PARTICULAR PURPOSE, OR AGAINST INFRINGEMENT.
*
*                Copyright ?1998 Micron Semiconductor Products, Inc.
*                All rights researved
*
* Rev   Author          Phone         Date        Changes
* ----  ----------------------------  ----------  ---------------------------------------
* 0.0f  Son Huynh       208-368-3825  07/08/1999  - Fix tWR = 1 Clk + 7.5 ns (Auto)
*       Micron Technology Inc.                    - Fix tWR = 15 ns (Manual)
*                                                 - Fix tRP (Autoprecharge to AutoRefresh)
*
* 0.0a  Son Huynh       208-368-3825  05/13/1998  - First Release (from 64Mb rev 0.0e)
*       Micron Technology Inc.
****************************************************************************************/

`timescale 1ns / 100ps

module sdram_model_plus (Dq, Addr, Ba, Clk, Cke, Cs_n, Ras_n, Cas_n, We_n, Dqm,Debug);

    parameter addr_bits =	11;
    parameter data_bits = 	32;
    parameter col_bits  =	8;
    parameter mem_sizes =	1048576*2-1;//1 Meg 

    inout     [data_bits - 1 : 0] Dq;
    input     [addr_bits - 1 : 0] Addr;
    input                 [1 : 0] Ba;
    input                         Clk;
    input                         Cke;
    input                         Cs_n;
    input                         Ras_n;
    input                         Cas_n;
    input                         We_n;
    input                 [3 : 0] Dqm;          //高低各8bit
    //added by xzli
    input			  Debug;

    reg       [data_bits - 1 : 0] Bank0 [0 : mem_sizes];//存储器类型数据
    reg       [data_bits - 1 : 0] Bank1 [0 : mem_sizes];
    reg       [data_bits - 1 : 0] Bank2 [0 : mem_sizes];
    reg       [data_bits - 1 : 0] Bank3 [0 : mem_sizes];

    reg                   [1 : 0] Bank_addr [0 : 3];                // Bank Address Pipeline
    reg        [col_bits - 1 : 0] Col_addr [0 : 3];                 // Column Address Pipeline
    reg                   [3 : 0] Command [0 : 3];                  // Command Operation Pipeline
    reg                   [3 : 0] Dqm_reg0, Dqm_reg1;               // DQM Operation Pipeline
    reg       [addr_bits - 1 : 0] B0_row_addr, B1_row_addr, B2_row_addr, B3_row_addr;

    reg       [addr_bits - 1 : 0] Mode_reg;
    reg       [data_bits - 1 : 0] Dq_reg, Dq_dqm;
    reg       [col_bits - 1 : 0] Col_temp, Burst_counter;

    reg                           Act_b0, Act_b1, Act_b2, Act_b3;   // Bank Activate
    reg                           Pc_b0, Pc_b1, Pc_b2, Pc_b3;       // Bank Precharge

    reg                   [1 : 0] Bank_precharge     [0 : 3];       // Precharge Command
    reg                           A10_precharge      [0 : 3];       // Addr[10] = 1 (All banks)
    reg                           Auto_precharge     [0 : 3];       // RW AutoPrecharge (Bank)
    reg                           Read_precharge     [0 : 3];       // R  AutoPrecharge
    reg                           Write_precharge    [0 : 3];       //  W AutoPrecharge
    integer                       Count_precharge    [0 : 3];       // RW AutoPrecharge (Counter)
    reg                           RW_interrupt_read  [0 : 3];       // RW Interrupt Read with Auto Precharge
    reg                           RW_interrupt_write [0 : 3];       // RW Interrupt Write with Auto Precharge

    reg                           Data_in_enable;
    reg                           Data_out_enable;

    reg                   [1 : 0] Bank, Previous_bank;
    reg       [addr_bits - 1 : 0] Row;
    reg        [col_bits - 1 : 0] Col, Col_brst;

    // Internal system clock
    reg                           CkeZ, Sys_clk;

    reg	[21:0]	dd;
    
    // Commands Decode
    wire      Active_enable    = ~Cs_n & ~Ras_n &  Cas_n &  We_n;
    wire      Aref_enable      = ~Cs_n & ~Ras_n & ~Cas_n &  We_n;
    wire      Burst_term       = ~Cs_n &  Ras_n &  Cas_n & ~We_n;
    wire      Mode_reg_enable  = ~Cs_n & ~Ras_n & ~Cas_n & ~We_n;
    wire      Prech_enable     = ~Cs_n & ~Ras_n &  Cas_n & ~We_n;
    wire      Read_enable      = ~Cs_n &  Ras_n & ~Cas_n &  We_n;
    wire      Write_enable     = ~Cs_n &  Ras_n & ~Cas_n & ~We_n;

    // Burst Length Decode
    wire      Burst_length_1   = ~Mode_reg[2] & ~Mode_reg[1] & ~Mode_reg[0];
    wire      Burst_length_2   = ~Mode_reg[2] & ~Mode_reg[1] &  Mode_reg[0];
    wire      Burst_length_4   = ~Mode_reg[2] &  Mode_reg[1] & ~Mode_reg[0];
    wire      Burst_length_8   = ~Mode_reg[2] &  Mode_reg[1] &  Mode_reg[0];

    // CAS Latency Decode
    wire      Cas_latency_2    = ~Mode_reg[6] &  Mode_reg[5] & ~Mode_reg[4];
    wire      Cas_latency_3    = ~Mode_reg[6] &  Mode_reg[5] &  Mode_reg[4];

    // Write Burst Mode
    wire      Write_burst_mode = Mode_reg[9];

    wire      Debug;		// Debug messages : 1 = On; 0 = Off
    wire      Dq_chk           = Sys_clk & Data_in_enable;      // Check setup/hold time for DQ

    reg		[31:0]	mem_d;
    
    event	sdram_r,sdram_w,compare;
    
    
   
   
    assign    Dq               = Dq_reg;                        // DQ buffer

    // Commands Operation
    `define   ACT       0
    `define   NOP       1
    `define   READ      2
    `define   READ_A    3
    `define   WRITE     4
    `define   WRITE_A   5
    `define   PRECH     6
    `define   A_REF     7
    `define   BST       8
    `define   LMR       9

//    // Timing Parameters for -75 (PC133) and CAS Latency = 2
//    parameter tAC  =   8;	//test 6.5
//    parameter tHZ  =   7.0;
//    parameter tOH  =   2.7;
//    parameter tMRD =   2.0;     // 2 Clk Cycles
//    parameter tRAS =  44.0;
//    parameter tRC  =  66.0;
//    parameter tRCD =  20.0;
//    parameter tRP  =  20.0;
//    parameter tRRD =  15.0;
//    parameter tWRa =   7.5;     // A2 Version - Auto precharge mode only (1 Clk + 7.5 ns)
//    parameter tWRp =  0.0;     // A2 Version - Precharge mode only (15 ns)

    // Timing Parameters for -7 (PC143) and CAS Latency = 3
    parameter tAC  =   6.5;	//test 6.5
    parameter tHZ  =   5.5;
    parameter tOH  =   2;
    parameter tMRD =   2.0;     // 2 Clk Cycles
    parameter tRAS =  48.0;
    parameter tRC  =  70.0;
    parameter tRCD =  20.0;
    parameter tRP  =  20.0;
    parameter tRRD =  14.0;
    parameter tWRa =   7.5;     // A2 Version - Auto precharge mode only (1 Clk + 7.5 ns)
    parameter tWRp =  0.0;     // A2 Version - Precharge mode only (15 ns)
    
    // Timing Check variable
    integer   MRD_chk;
    integer   WR_counter [0 : 3];
    time      WR_chk [0 : 3];
    time      RC_chk, RRD_chk;
    time      RAS_chk0, RAS_chk1, RAS_chk2, RAS_chk3;
    time      RCD_chk0, RCD_chk1, RCD_chk2, RCD_chk3;
    time      RP_chk0, RP_chk1, RP_chk2, RP_chk3;

    integer	test_file;
    
    //*****display the command of the sdram**************************************
    
    parameter	Mode_Reg_Set	=4'b0000;
    parameter	Auto_Refresh	=4'b0001;
    parameter	Row_Active	=4'b0011;
    parameter	Pre_Charge	=4'b0010;
    parameter	PreCharge_All	=4'b0010;
    parameter	Write		=4'b0100;
    parameter	Write_Pre	=4'b0100;
    parameter	Read		=4'b0101;
    parameter	Read_Pre	=4'b0101;
    parameter	Burst_Stop	=4'b0110;
    parameter	Nop		=4'b0111;
    parameter	Dsel		=4'b1111;

    wire	[3:0]	sdram_control;
    reg			cke_temp;
    reg		[8*13:1]	sdram_command;
   
    always@(posedge Clk)
	cke_temp<=Cke;

    assign	sdram_control={Cs_n,Ras_n,Cas_n,We_n};

    always@(sdram_control or cke_temp)
	begin
		case(sdram_control)
			Mode_Reg_Set:	sdram_command<="Mode_Reg_Set";
			Auto_Refresh:	sdram_command<="Auto_Refresh";
			Row_Active:	sdram_command<="Row_Active";
			Pre_Charge:	sdram_command<="Pre_Charge";
			Burst_Stop:	sdram_command<="Burst_Stop";
			Dsel:		sdram_command<="Dsel";

			Write:		if(cke_temp==1)
						sdram_command<="Write";
					else
						sdram_command<="Write_suspend";
						
			Read:		if(cke_temp==1)
						sdram_command<="Read";
					else
						sdram_command<="Read_suspend";
						
			Nop:		if(cke_temp==1)
						sdram_command<="Nop";
					else
						sdram_command<="Self_refresh";
						
			default:	sdram_command<="Power_down";
		endcase
	end

    //*****************************************************
    
    initial 
    	begin
		//test_file=$fopen("test_file.txt");
	end

    initial 
    	begin
        Dq_reg = {data_bits{1'bz}};
        {Data_in_enable, Data_out_enable} = 0;
        {Act_b0, Act_b1, Act_b2, Act_b3} = 4'b0000;
        {Pc_b0, Pc_b1, Pc_b2, Pc_b3} = 4'b0000;
        {WR_chk[0], WR_chk[1], WR_chk[2], WR_chk[3]} = 0;
        {WR_counter[0], WR_counter[1], WR_counter[2], WR_counter[3]} = 0;
        {RW_interrupt_read[0], RW_interrupt_read[1], RW_interrupt_read[2], RW_interrupt_read[3]} = 0;
        {RW_interrupt_write[0], RW_interrupt_write[1], RW_interrupt_write[2], RW_interrupt_write[3]} = 0;
        {MRD_chk, RC_chk, RRD_chk} = 0;
        {RAS_chk0, RAS_chk1, RAS_chk2, RAS_chk3} = 0;
        {RCD_chk0, RCD_chk1, RCD_chk2, RCD_chk3} = 0;
        {RP_chk0, RP_chk1, RP_chk2, RP_chk3} = 0;
        $timeformat (-9, 0, " ns", 12);
        //$readmemh("bank0.txt", Bank0);
        //$readmemh("bank1.txt", Bank1);
        //$readmemh("bank2.txt", Bank2);
        //$readmemh("bank3.txt", Bank3);
/*  	
  	 for(dd=0;dd<=mem_sizes;dd=dd+1)
        	begin
        		Bank0[dd]=dd[data_bits - 1 : 0];
        		Bank1[dd]=dd[data_bits - 1 : 0]+1;
        		Bank2[dd]=dd[data_bits - 1 : 0]+2;
        		Bank3[dd]=dd[data_bits - 1 : 0]+3;
        	end
*/        	
  	initial_sdram(0);
  	end
 
        task	initial_sdram; 
 
 		input		data_sign;
 		reg	[3:0]	data_sign;
 	     
       		for(dd=0;dd<=mem_sizes;dd=dd+1)
        	begin
        		mem_d = {data_sign,data_sign,data_sign,data_sign,data_sign,data_sign,data_sign,data_sign};
        		if(data_bits==16)
        			begin
        				Bank0[dd]=mem_d[15:0];
        				Bank1[dd]=mem_d[15:0];
        				Bank2[dd]=mem_d[15:0];
        				Bank3[dd]=mem_d[15:0];
        			end
        		else if(data_bits==32)
        			begin
        				Bank0[dd]=mem_d[31:0];
        				Bank1[dd]=mem_d[31:0];
        				Bank2[dd]=mem_d[31:0];
        				Bank3[dd]=mem_d[31:0];
        			end
        	end	
      	
       		endtask

    // System clock generator
    always
    	begin
       		@(posedge Clk)
       			begin
            			Sys_clk = CkeZ;
            			CkeZ = Cke;
        		end
        	@(negedge Clk) 
        		begin
            			Sys_clk = 1'b0;
        		end
    	end

    always @ (posedge Sys_clk) begin
        // Internal Commamd Pipelined
        Command[0] = Command[1];
        Command[1] = Command[2];
        Command[2] = Command[3];
        Command[3] = `NOP;

        Col_addr[0] = Col_addr[1];
        Col_addr[1] = Col_addr[2];
        Col_addr[2] = Col_addr[3];
        Col_addr[3] = {col_bits{1'b0}};

        Bank_addr[0] = Bank_addr[1];
        Bank_addr[1] = Bank_addr[2];
        Bank_addr[2] = Bank_addr[3];
        Bank_addr[3] = 2'b0;

        Bank_precharge[0] = Bank_precharge[1];
        Bank_precharge[1] = Bank_precharge[2];
        Bank_precharge[2] = Bank_precharge[3];
        Bank_precharge[3] = 2'b0;

        A10_precharge[0] = A10_precharge[1];
        A10_precharge[1] = A10_precharge[2];
        A10_precharge[2] = A10_precharge[3];
        A10_precharge[3] = 1'b0;

        // Dqm pipeline for Read
        Dqm_reg0 = Dqm_reg1;
        Dqm_reg1 = Dqm;

        // Read or Write with Auto Precharge Counter
        if (Auto_precharge[0] == 1'b1) begin
            Count_precharge[0] = Count_precharge[0] + 1;
        end
        if (Auto_precharge[1] == 1'b1) begin
            Count_precharge[1] = Count_precharge[1] + 1;
        end
        if (Auto_precharge[2] == 1'b1) begin
            Count_precharge[2] = Count_precharge[2] + 1;
        end
        if (Auto_precharge[3] == 1'b1) begin
            Count_precharge[3] = Count_precharge[3] + 1;
        end

        // tMRD Counter
        MRD_chk = MRD_chk + 1;

        // tWR Counter for Write
        WR_counter[0] = WR_counter[0] + 1;
        WR_counter[1] = WR_counter[1] + 1;
        WR_counter[2] = WR_counter[2] + 1;
        WR_counter[3] = WR_counter[3] + 1;

        // Auto Refresh
        if (Aref_enable == 1'b1) begin
            if (Debug) $display ("at time %t AREF : Auto Refresh", $time);
            // Auto Refresh to Auto Refresh
            if (($time - RC_chk < tRC)&&Debug) begin
                $display ("at time %t ERROR: tRC violation during Auto Refresh", $time);
            end
            // Precharge to Auto Refresh
            if (($time - RP_chk0 < tRP || $time - RP_chk1 < tRP || $time - RP_chk2 < tRP || $time - RP_chk3 < tRP)&&Debug) begin
                $display ("at time %t ERROR: tRP violation during Auto Refresh", $time);
            end
            // Precharge to Refresh
            if (Pc_b0 == 1'b0 || Pc_b1 == 1'b0 || Pc_b2 == 1'b0 || Pc_b3 == 1'b0) begin
                $display ("at time %t ERROR: All banks must be Precharge before Auto Refresh", $time);
            end
            // Record Current tRC time
            RC_chk = $time;
        end
        
        // Load Mode Register
        if (Mode_reg_enable == 1'b1) begin
            // Decode CAS Latency, Burst Length, Burst Type, and Write Burst Mode
            if (Pc_b0 == 1'b1 && Pc_b1 == 1'b1 && Pc_b2 == 1'b1 && Pc_b3 == 1'b1) begin
                Mode_reg = Addr;
                if (Debug) begin
                    $display ("at time %t LMR  : Load Mode Register", $time);
                    // CAS Latency
                    if (Addr[6 : 4] == 3'b010)
                        $display ("                            CAS Latency      = 2");
                    else if (Addr[6 : 4] == 3'b011)
                        $display ("                            CAS Latency      = 3");
                    else
                        $display ("                            CAS Latency      = Reserved");
                    // Burst Length
                    if (Addr[2 : 0] == 3'b000)
                        $display ("                            Burst Length     = 1");
                    else if (Addr[2 : 0] == 3'b001)
                        $display ("                            Burst Length     = 2");
                    else if (Addr[2 : 0] == 3'b010)
                        $display ("                            Burst Length     = 4");
                    else if (Addr[2 : 0] == 3'b011)
                        $display ("                            Burst Length     = 8");
                    else if (Addr[3 : 0] == 4'b0111)
                        $display ("                            Burst Length     = Full");
                    else
                        $display ("                            Burst Length     = Reserved");
                    // Burst Type
                    if (Addr[3] == 1'b0)
                        $display ("                            Burst Type       = Sequential");
                    else if (Addr[3] == 1'b1)
                        $display ("                            Burst Type       = Interleaved");
                    else
                        $display ("                            Burst Type       = Reserved");
                    // Write Burst Mode
                    if (Addr[9] == 1'b0)
                        $display ("                            Write Burst Mode = Programmed Burst Length");
                    else if (Addr[9] == 1'b1)
                        $display ("                            Write Burst Mode = Single Location Access");
                    else
                        $display ("                            Write Burst Mode = Reserved");
                end
            end else begin
                $display ("at time %t ERROR: all banks must be Precharge before Load Mode Register", $time);
            end
            // REF to LMR
            if ($time - RC_chk < tRC) begin
                $display ("at time %t ERROR: tRC violation during Load Mode Register", $time);
            end
            // LMR to LMR
            if (MRD_chk < tMRD) begin
                $display ("at time %t ERROR: tMRD violation during Load Mode Register", $time);
            end
            MRD_chk = 0;
        end
        
        // Active Block (Latch Bank Address and Row Address)
        if (Active_enable == 1'b1) begin
            if (Ba == 2'b00 && Pc_b0 == 1'b1) begin
                {Act_b0, Pc_b0} = 2'b10;
                B0_row_addr = Addr [addr_bits - 1 : 0];
                RCD_chk0 = $time;
                RAS_chk0 = $time;
                if (Debug) $display ("at time %t ACT  : Bank = 0 Row = %d", $time, Addr);
                // Precharge to Activate Bank 0
                if ($time - RP_chk0 < tRP) begin
                    $display ("at time %t ERROR: tRP violation during Activate bank 0", $time);
                end
            end else if (Ba == 2'b01 && Pc_b1 == 1'b1) begin
                {Act_b1, Pc_b1} = 2'b10;
                B1_row_addr = Addr [addr_bits - 1 : 0];
                RCD_chk1 = $time;
                RAS_chk1 = $time;
                if (Debug) $display ("at time %t ACT  : Bank = 1 Row = %d", $time, Addr);
                // Precharge to Activate Bank 1
                if ($time - RP_chk1 < tRP) begin
                    $display ("at time %t ERROR: tRP violation during Activate bank 1", $time);
                end
            end else if (Ba == 2'b10 && Pc_b2 == 1'b1) begin
                {Act_b2, Pc_b2} = 2'b10;
                B2_row_addr = Addr [addr_bits - 1 : 0];
                RCD_chk2 = $time;
                RAS_chk2 = $time;
                if (Debug) $display ("at time %t ACT  : Bank = 2 Row = %d", $time, Addr);
                // Precharge to Activate Bank 2
                if ($time - RP_chk2 < tRP) begin
                    $display ("at time %t ERROR: tRP violation during Activate bank 2", $time);
                end
            end else if (Ba == 2'b11 && Pc_b3 == 1'b1) begin
                {Act_b3, Pc_b3} = 2'b10;
                B3_row_addr = Addr [addr_bits - 1 : 0];
                RCD_chk3 = $time;
                RAS_chk3 = $time;
                if (Debug) $display ("at time %t ACT  : Bank = 3 Row = %d", $time, Addr);
                // Precharge to Activate Bank 3
                if ($time - RP_chk3 < tRP) begin
                    $display ("at time %t ERROR: tRP violation during Activate bank 3", $time);
                end
            end else if (Ba == 2'b00 && Pc_b0 == 1'b0) begin
                $display ("at time %t ERROR: Bank 0 is not Precharged.", $time);
            end else if (Ba == 2'b01 && Pc_b1 == 1'b0) begin
                $display ("at time %t ERROR: Bank 1 is not Precharged.", $time);
            end else if (Ba == 2'b10 && Pc_b2 == 1'b0) begin
                $display ("at time %t ERROR: Bank 2 is not Precharged.", $time);
            end else if (Ba == 2'b11 && Pc_b3 == 1'b0) begin
                $display ("at time %t ERROR: Bank 3 is not Precharged.", $time);
            end
            // Active Bank A to Active Bank B
            if ((Previous_bank != Ba) && ($time - RRD_chk < tRRD)) begin
                $display ("at time %t ERROR: tRRD violation during Activate bank = %d", $time, Ba);
            end
            // Load Mode Register to Active
            if (MRD_chk < tMRD ) begin
                $display ("at time %t ERROR: tMRD violation during Activate bank = %d", $time, Ba);
            end
            // Auto Refresh to Activate
            if (($time - RC_chk < tRC)&&Debug) begin
                $display ("at time %t ERROR: tRC violation during Activate bank = %d", $time, Ba);
            end
            // Record variables for checking violation
            RRD_chk = $time;
            Previous_bank = Ba;
        end
        
        // Precharge Block
        if (Prech_enable == 1'b1) begin
            if (Addr[10] == 1'b1) begin
                {Pc_b0, Pc_b1, Pc_b2, Pc_b3} = 4'b1111;
                {Act_b0, Act_b1, Act_b2, Act_b3} = 4'b0000;
                RP_chk0 = $time;
                RP_chk1 = $time;
                RP_chk2 = $time;
                RP_chk3 = $time;
                if (Debug) $display ("at time %t PRE  : Bank = ALL",$time);
                // Activate to Precharge all banks
                if (($time - RAS_chk0 < tRAS) || ($time - RAS_chk1 < tRAS) ||
                    ($time - RAS_chk2 < tRAS) || ($time - RAS_chk3 < tRAS)) begin
                    $display ("at time %t ERROR: tRAS violation during Precharge all bank", $time);
                end
                // tWR violation check for write
                if (($time - WR_chk[0] < tWRp) || ($time - WR_chk[1] < tWRp) ||
                    ($time - WR_chk[2] < tWRp) || ($time - WR_chk[3] < tWRp)) begin
                    $display ("at time %t ERROR: tWR violation during Precharge all bank", $time);
                end
            end else if (Addr[10] == 1'b0) begin
                if (Ba == 2'b00) begin
                    {Pc_b0, Act_b0} = 2'b10;
                    RP_chk0 = $time;
                    if (Debug) $display ("at time %t PRE  : Bank = 0",$time);
                    // Activate to Precharge Bank 0
                    if ($time - RAS_chk0 < tRAS) begin
                        $display ("at time %t ERROR: tRAS violation during Precharge bank 0", $time);
                    end
                end else if (Ba == 2'b01) begin
                    {Pc_b1, Act_b1} = 2'b10;
                    RP_chk1 = $time;
                    if (Debug) $display ("at time %t PRE  : Bank = 1",$time);
                    // Activate to Precharge Bank 1
                    if ($time - RAS_chk1 < tRAS) begin
                        $display ("at time %t ERROR: tRAS violation during Precharge bank 1", $time);
                    end
                end else if (Ba == 2'b10) begin
                    {Pc_b2, Act_b2} = 2'b10;
                    RP_chk2 = $time;
                    if (Debug) $display ("at time %t PRE  : Bank = 2",$time);
                    // Activate to Precharge Bank 2
                    if ($time - RAS_chk2 < tRAS) begin
                        $display ("at time %t ERROR: tRAS violation during Precharge bank 2", $time);
                    end
                end else if (Ba == 2'b11) begin
                    {Pc_b3, Act_b3} = 2'b10;
                    RP_chk3 = $time;
                    if (Debug) $display ("at time %t PRE  : Bank = 3",$time);
                    // Activate to Precharge Bank 3
                    if ($time - RAS_chk3 < tRAS) begin
                        $display ("at time %t ERROR: tRAS violation during Precharge bank 3", $time);
                    end
                end
                // tWR violation check for write
                if ($time - WR_chk[Ba] < tWRp) begin
                    $display ("at time %t ERROR: tWR violation during Precharge bank %d", $time, Ba);
                end
            end
            // Terminate a Write Immediately (if same bank or all banks)
            if (Data_in_enable == 1'b1 && (Bank == Ba || Addr[10] == 1'b1)) begin
                Data_in_enable = 1'b0;
            end
            // Precharge Command Pipeline for Read
            if (Cas_latency_3 == 1'b1) begin
                Command[2] = `PRECH;
                Bank_precharge[2] = Ba;
                A10_precharge[2] = Addr[10];
            end else if (Cas_latency_2 == 1'b1) begin
                Command[1] = `PRECH;
                Bank_precharge[1] = Ba;
                A10_precharge[1] = Addr[10];
            end
        end
        
        // Burst terminate
        if (Burst_term == 1'b1) begin
            // Terminate a Write Immediately
            if (Data_in_enable == 1'b1) begin
                Data_in_enable = 1'b0;
            end
            // Terminate a Read Depend on CAS Latency
            if (Cas_latency_3 == 1'b1) begin
                Command[2] = `BST;
            end else if (Cas_latency_2 == 1'b1) begin
                Command[1] = `BST;
            end
            if (Debug) $display ("at time %t BST  : Burst Terminate",$time);
        end
        
        // Read, Write, Column Latch
        if (Read_enable == 1'b1 || Write_enable == 1'b1) begin
            // Check to see if bank is open (ACT)
            if ((Ba == 2'b00 && Pc_b0 == 1'b1) || (Ba == 2'b01 && Pc_b1 == 1'b1) ||
                (Ba == 2'b10 && Pc_b2 == 1'b1) || (Ba == 2'b11 && Pc_b3 == 1'b1)) begin
                $display("at time %t ERROR: Cannot Read or Write - Bank %d is not Activated", $time, Ba);
            end
            // Activate to Read or Write
            if ((Ba == 2'b00) && ($time - RCD_chk0 < tRCD))
                $display("at time %t ERROR: tRCD violation during Read or Write to Bank 0", $time);
            if ((Ba == 2'b01) && ($time - RCD_chk1 < tRCD))
                $display("at time %t ERROR: tRCD violation during Read or Write to Bank 1", $time);
            if ((Ba == 2'b10) && ($time - RCD_chk2 < tRCD))
                $display("at time %t ERROR: tRCD violation during Read or Write to Bank 2", $time);
            if ((Ba == 2'b11) && ($time - RCD_chk3 < tRCD))
                $display("at time %t ERROR: tRCD violation during Read or Write to Bank 3", $time);
            // Read Command
            if (Read_enable == 1'b1) begin
                // CAS Latency pipeline
                if (Cas_latency_3 == 1'b1) begin
                    if (Addr[10] == 1'b1) begin
                        Command[2] = `READ_A;
                    end else begin
                        Command[2] = `READ;
                    end
                    Col_addr[2] = Addr;
                    Bank_addr[2] = Ba;
                end else if (Cas_latency_2 == 1'b1) begin
                    if (Addr[10] == 1'b1) begin
                        Command[1] = `READ_A;
                    end else begin
                        Command[1] = `READ;
                    end
                    Col_addr[1] = Addr;
                    Bank_addr[1] = Ba;
                end

                // Read interrupt Write (terminate Write immediately)
                if (Data_in_enable == 1'b1) begin
                    Data_in_enable = 1'b0;
                end

            // Write Command
            end else if (Write_enable == 1'b1) begin
                if (Addr[10] == 1'b1) begin
                    Command[0] = `WRITE_A;
                end else begin
                    Command[0] = `WRITE;
                end
                Col_addr[0] = Addr;
                Bank_addr[0] = Ba;

                // Write interrupt Write (terminate Write immediately)
                if (Data_in_enable == 1'b1) begin
                    Data_in_enable = 1'b0;
                end

                // Write interrupt Read (terminate Read immediately)
                if (Data_out_enable == 1'b1) begin
                    Data_out_enable = 1'b0;
                end
            end

            // Interrupting a Write with Autoprecharge
            if (Auto_precharge[Bank] == 1'b1 && Write_precharge[Bank] == 1'b1) begin
                RW_interrupt_write[Bank] = 1'b1;
                if (Debug) $display ("at time %t NOTE : Read/Write Bank %d interrupt Write Bank %d with Autoprecharge", $time, Ba, Bank);
            end

            // Interrupting a Read with Autoprecharge
            if (Auto_precharge[Bank] == 1'b1 && Read_precharge[Bank] == 1'b1) begin
                RW_interrupt_read[Bank] = 1'b1;
                if (Debug) $display ("at time %t NOTE : Read/Write Bank %d interrupt Read Bank %d with Autoprecharge", $time, Ba, Bank);
            end

            // Read or Write with Auto Precharge
            if (Addr[10] == 1'b1) begin
                Auto_precharge[Ba] = 1'b1;
                Count_precharge[Ba] = 0;
                if (Read_enable == 1'b1) begin
                    Read_precharge[Ba] = 1'b1;
                end else if (Write_enable == 1'b1) begin
                    Write_precharge[Ba] = 1'b1;
                end
            end
        end

        //  Read with Auto Precharge Calculation
        //      The device start internal precharge:
        //          1.  CAS Latency - 1 cycles before last burst
        //      and 2.  Meet minimum tRAS requirement
        //       or 3.  Interrupt by a Read or Write (with or without AutoPrecharge)
        if ((Auto_precharge[0] == 1'b1) && (Read_precharge[0] == 1'b1)) begin
            if ((($time - RAS_chk0 >= tRAS) &&                                                      // Case 2
                ((Burst_length_1 == 1'b1 && Count_precharge[0] >= 1) ||                             // Case 1
                 (Burst_length_2 == 1'b1 && Count_precharge[0] >= 2) ||
                 (Burst_length_4 == 1'b1 && Count_precharge[0] >= 4) ||
                 (Burst_length_8 == 1'b1 && Count_precharge[0] >= 8))) ||
                 (RW_interrupt_read[0] == 1'b1)) begin                                              // Case 3
                    Pc_b0 = 1'b1;
                    Act_b0 = 1'b0;
                    RP_chk0 = $time;
                    Auto_precharge[0] = 1'b0;
                    Read_precharge[0] = 1'b0;
                    RW_interrupt_read[0] = 1'b0;
                    if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 0", $time);
            end
        end
        if ((Auto_precharge[1] == 1'b1) && (Read_precharge[1] == 1'b1)) begin
            if ((($time - RAS_chk1 >= tRAS) &&
                ((Burst_length_1 == 1'b1 && Count_precharge[1] >= 1) || 
                 (Burst_length_2 == 1'b1 && Count_precharge[1] >= 2) ||
                 (Burst_length_4 == 1'b1 && Count_precharge[1] >= 4) ||
                 (Burst_length_8 == 1'b1 && Count_precharge[1] >= 8))) ||
                 (RW_interrupt_read[1] == 1'b1)) begin
                    Pc_b1 = 1'b1;
                    Act_b1 = 1'b0;
                    RP_chk1 = $time;
                    Auto_precharge[1] = 1'b0;
                    Read_precharge[1] = 1'b0;
                    RW_interrupt_read[1] = 1'b0;
                    if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 1", $time);
            end
        end
        if ((Auto_precharge[2] == 1'b1) && (Read_precharge[2] == 1'b1)) begin
            if ((($time - RAS_chk2 >= tRAS) &&
                ((Burst_length_1 == 1'b1 && Count_precharge[2] >= 1) || 
                 (Burst_length_2 == 1'b1 && Count_precharge[2] >= 2) ||
                 (Burst_length_4 == 1'b1 && Count_precharge[2] >= 4) ||
                 (Burst_length_8 == 1'b1 && Count_precharge[2] >= 8))) ||
                 (RW_interrupt_read[2] == 1'b1)) begin
                    Pc_b2 = 1'b1;
                    Act_b2 = 1'b0;
                    RP_chk2 = $time;
                    Auto_precharge[2] = 1'b0;
                    Read_precharge[2] = 1'b0;
                    RW_interrupt_read[2] = 1'b0;
                    if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 2", $time);
            end
        end
        if ((Auto_precharge[3] == 1'b1) && (Read_precharge[3] == 1'b1)) begin
            if ((($time - RAS_chk3 >= tRAS) &&
                ((Burst_length_1 == 1'b1 && Count_precharge[3] >= 1) || 
                 (Burst_length_2 == 1'b1 && Count_precharge[3] >= 2) ||
                 (Burst_length_4 == 1'b1 && Count_precharge[3] >= 4) ||
                 (Burst_length_8 == 1'b1 && Count_precharge[3] >= 8))) ||
                 (RW_interrupt_read[3] == 1'b1)) begin
                    Pc_b3 = 1'b1;
                    Act_b3 = 1'b0;
                    RP_chk3 = $time;
                    Auto_precharge[3] = 1'b0;
                    Read_precharge[3] = 1'b0;
                    RW_interrupt_read[3] = 1'b0;
                    if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 3", $time);
            end
        end

        // Internal Precharge or Bst
        if (Command[0] == `PRECH) begin                         // Precharge terminate a read with same bank or all banks
            if (Bank_precharge[0] == Bank || A10_precharge[0] == 1'b1) begin
                if (Data_out_enable == 1'b1) begin
                    Data_out_enable = 1'b0;
                end
            end
        end else if (Command[0] == `BST) begin                  // BST terminate a read to current bank
            if (Data_out_enable == 1'b1) begin
                Data_out_enable = 1'b0;
            end
        end

        if (Data_out_enable == 1'b0) begin
            Dq_reg <= #tOH {data_bits{1'bz}};
        end

        // Detect Read or Write command
        if (Command[0] == `READ || Command[0] == `READ_A) begin
            Bank = Bank_addr[0];
            Col = Col_addr[0];
            Col_brst = Col_addr[0];
            if (Bank_addr[0] == 2'b00) begin
                Row = B0_row_addr;
            end else if (Bank_addr[0] == 2'b01) begin
                Row = B1_row_addr;
            end else if (Bank_addr[0] == 2'b10) begin
                Row = B2_row_addr;
            end else if (Bank_addr[0] == 2'b11) begin
                Row = B3_row_addr;
            end
            Burst_counter = 0;
            Data_in_enable = 1'b0;
            Data_out_enable = 1'b1;
        end else if (Command[0] == `WRITE || Command[0] == `WRITE_A) begin
            Bank = Bank_addr[0];
            Col = Col_addr[0];
            Col_brst = Col_addr[0];
            if (Bank_addr[0] == 2'b00) begin
                Row = B0_row_addr;
            end else if (Bank_addr[0] == 2'b01) begin
                Row = B1_row_addr;
            end else if (Bank_addr[0] == 2'b10) begin
                Row = B2_row_addr;
            end else if (Bank_addr[0] == 2'b11) begin
                Row = B3_row_addr;
            end
            Burst_counter = 0;
            Data_in_enable = 1'b1;
            Data_out_enable = 1'b0;
        end

        // DQ buffer (Driver/Receiver)
        if (Data_in_enable == 1'b1) begin                                   // Writing Data to Memory
            // Array buffer
            if (Bank == 2'b00) Dq_dqm [data_bits - 1  : 0] = Bank0 [{Row, Col}];
            if (Bank == 2'b01) Dq_dqm [data_bits - 1  : 0] = Bank1 [{Row, Col}];
            if (Bank == 2'b10) Dq_dqm [data_bits - 1  : 0] = Bank2 [{Row, Col}];
            if (Bank == 2'b11) Dq_dqm [data_bits - 1  : 0] = Bank3 [{Row, Col}];
            // Dqm operation
            if (Dqm[0] == 1'b0) Dq_dqm [ 7 : 0] = Dq [ 7 : 0];
            if (Dqm[1] == 1'b0) Dq_dqm [15 : 8] = Dq [15 : 8];
            //if (Dqm[2] == 1'b0) Dq_dqm [23 : 16] = Dq [23 : 16];
           // if (Dqm[3] == 1'b0) Dq_dqm [31 : 24] = Dq [31 : 24];
            // Write to memory
            if (Bank == 2'b00) Bank0 [{Row, Col}] = Dq_dqm [data_bits - 1  : 0];
            if (Bank == 2'b01) Bank1 [{Row, Col}] = Dq_dqm [data_bits - 1  : 0];
            if (Bank == 2'b10) Bank2 [{Row, Col}] = Dq_dqm [data_bits - 1  : 0];
            if (Bank == 2'b11) Bank3 [{Row, Col}] = Dq_dqm [data_bits - 1  : 0];
            if (Bank == 2'b11 && Row==10'h3 && Col[7:4]==4'h4)
            	$display("at time %t WRITE: Bank = %d Row = %d, Col = %d, Data = Hi-Z due to DQM", $time, Bank, Row, Col);
            //$fdisplay(test_file,"bank:%h	row:%h	col:%h	write:%h",Bank,Row,Col,Dq_dqm);
            // Output result
            if (Dqm == 4'b1111) begin
                if (Debug) $display("at time %t WRITE: Bank = %d Row = %d, Col = %d, Data = Hi-Z due to DQM", $time, Bank, Row, Col);
            end else begin
                if (Debug) $display("at time %t WRITE: Bank = %d Row = %d, Col = %d, Data = %d, Dqm = %b", $time, Bank, Row, Col, Dq_dqm, Dqm);
                // Record tWR time and reset counter
                WR_chk [Bank] = $time;
                WR_counter [Bank] = 0;
            end
            // Advance burst counter subroutine
            #tHZ Burst;
        end else if (Data_out_enable == 1'b1) begin                         // Reading Data from Memory
        	//$display("%h	,	%h,	%h",Bank0,Row,Col);
            // Array buffer
            if (Bank == 2'b00) Dq_dqm [data_bits - 1  : 0] = Bank0 [{Row, Col}];
            if (Bank == 2'b01) Dq_dqm [data_bits - 1  : 0] = Bank1 [{Row, Col}];
            if (Bank == 2'b10) Dq_dqm [data_bits - 1  : 0] = Bank2 [{Row, Col}];
            if (Bank == 2'b11) Dq_dqm [data_bits - 1  : 0] = Bank3 [{Row, Col}];
            	
            // Dqm operation
            if (Dqm_reg0[0] == 1'b1) Dq_dqm [ 7 : 0] = 8'bz;
            if (Dqm_reg0[1] == 1'b1) Dq_dqm [15 : 8] = 8'bz;
            if (Dqm_reg0[2] == 1'b1) Dq_dqm [23 : 16] = 8'bz;
            if (Dqm_reg0[3] == 1'b1) Dq_dqm [31 : 24] = 8'bz;
            // Display result
            Dq_reg [data_bits - 1  : 0] = #tAC Dq_dqm [data_bits - 1  : 0];
            if (Dqm_reg0 == 4'b1111) begin
                if (Debug) $display("at time %t READ : Bank = %d Row = %d, Col = %d, Data = Hi-Z due to DQM", $time, Bank, Row, Col);
            end else begin
                if (Debug) $display("at time %t READ : Bank = %d Row = %d, Col = %d, Data = %d, Dqm = %b", $time, Bank, Row, Col, Dq_reg, Dqm_reg0);
            end
            // Advance burst counter subroutine
            Burst;
        end
    end

    //  Write with Auto Precharge Calculation
    //      The device start internal precharge:
    //          1.  tWR Clock after last burst
    //      and 2.  Meet minimum tRAS requirement
    //       or 3.  Interrupt by a Read or Write (with or without AutoPrecharge)
    always @ (WR_counter[0]) begin
        if ((Auto_precharge[0] == 1'b1) && (Write_precharge[0] == 1'b1)) begin
            if ((($time - RAS_chk0 >= tRAS) &&                                                          // Case 2
               (((Burst_length_1 == 1'b1 || Write_burst_mode == 1'b1) && Count_precharge [0] >= 1) ||   // Case 1
                 (Burst_length_2 == 1'b1 && Count_precharge [0] >= 2) ||
                 (Burst_length_4 == 1'b1 && Count_precharge [0] >= 4) ||
                 (Burst_length_8 == 1'b1 && Count_precharge [0] >= 8))) ||
                 (RW_interrupt_write[0] == 1'b1 && WR_counter[0] >= 2)) begin                           // Case 3 (stop count when interrupt)
                    Auto_precharge[0] = 1'b0;
                    Write_precharge[0] = 1'b0;
                    RW_interrupt_write[0] = 1'b0;
                    #tWRa;                          // Wait for tWR
                    Pc_b0 = 1'b1;
                    Act_b0 = 1'b0;
                    RP_chk0 = $time;
                    if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 0", $time);
            end
        end
    end
    always @ (WR_counter[1]) begin
        if ((Auto_precharge[1] == 1'b1) && (Write_precharge[1] == 1'b1)) begin
            if ((($time - RAS_chk1 >= tRAS) &&
               (((Burst_length_1 == 1'b1 || Write_burst_mode == 1'b1) && Count_precharge [1] >= 1) || 
                 (Burst_length_2 == 1'b1 && Count_precharge [1] >= 2) ||
                 (Burst_length_4 == 1'b1 && Count_precharge [1] >= 4) ||
                 (Burst_length_8 == 1'b1 && Count_precharge [1] >= 8))) ||
                 (RW_interrupt_write[1] == 1'b1 && WR_counter[1] >= 2)) begin
                    Auto_precharge[1] = 1'b0;
                    Write_precharge[1] = 1'b0;
                    RW_interrupt_write[1] = 1'b0;
                    #tWRa;                          // Wait for tWR
                    Pc_b1 = 1'b1;
                    Act_b1 = 1'b0;
                    RP_chk1 = $time;
                    if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 1", $time);
            end
        end
    end
    always @ (WR_counter[2]) begin
        if ((Auto_precharge[2] == 1'b1) && (Write_precharge[2] == 1'b1)) begin
            if ((($time - RAS_chk2 >= tRAS) &&
               (((Burst_length_1 == 1'b1 || Write_burst_mode == 1'b1) && Count_precharge [2] >= 1) || 
                 (Burst_length_2 == 1'b1 && Count_precharge [2] >= 2) ||
                 (Burst_length_4 == 1'b1 && Count_precharge [2] >= 4) ||
                 (Burst_length_8 == 1'b1 && Count_precharge [2] >= 8))) ||
                 (RW_interrupt_write[2] == 1'b1 && WR_counter[2] >= 2)) begin
                    Auto_precharge[2] = 1'b0;
                    Write_precharge[2] = 1'b0;
                    RW_interrupt_write[2] = 1'b0;
                    #tWRa;                          // Wait for tWR
                    Pc_b2 = 1'b1;
                    Act_b2 = 1'b0;
                    RP_chk2 = $time;
                    if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 2", $time);
            end
        end
    end
    always @ (WR_counter[3]) begin
        if ((Auto_precharge[3] == 1'b1) && (Write_precharge[3] == 1'b1)) begin
            if ((($time - RAS_chk3 >= tRAS) &&
               (((Burst_length_1 == 1'b1 || Write_burst_mode == 1'b1) && Count_precharge [3] >= 1) || 
                 (Burst_length_2 == 1'b1 && Count_precharge [3] >= 2) ||
                 (Burst_length_4 == 1'b1 && Count_precharge [3] >= 4) ||
                 (Burst_length_8 == 1'b1 && Count_precharge [3] >= 8))) ||
                 (RW_interrupt_write[3] == 1'b1 && WR_counter[3] >= 2)) begin
                    Auto_precharge[3] = 1'b0;
                    Write_precharge[3] = 1'b0;
                    RW_interrupt_write[3] = 1'b0;
                    #tWRa;                          // Wait for tWR
                    Pc_b3 = 1'b1;
                    Act_b3 = 1'b0;
                    RP_chk3 = $time;
                    if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 3", $time);
            end
        end
    end

    task Burst;
        begin
            // Advance Burst Counter
            Burst_counter = Burst_counter + 1;

            // Burst Type
            if (Mode_reg[3] == 1'b0) begin                                  // Sequential Burst
                Col_temp = Col + 1;
            end else if (Mode_reg[3] == 1'b1) begin                         // Interleaved Burst
                Col_temp[2] =  Burst_counter[2] ^  Col_brst[2];
                Col_temp[1] =  Burst_counter[1] ^  Col_brst[1];
                Col_temp[0] =  Burst_counter[0] ^  Col_brst[0];
            end

            // Burst Length
            if (Burst_length_2) begin                                       // Burst Length = 2
                Col [0] = Col_temp [0];
            end else if (Burst_length_4) begin                              // Burst Length = 4
                Col [1 : 0] = Col_temp [1 : 0];
            end else if (Burst_length_8) begin                              // Burst Length = 8
                Col [2 : 0] = Col_temp [2 : 0];
            end else begin                                                  // Burst Length = FULL
                Col = Col_temp;
            end

            // Burst Read Single Write            
            if (Write_burst_mode == 1'b1) begin
                Data_in_enable = 1'b0;
            end

            // Data Counter
            if (Burst_length_1 == 1'b1) begin
                if (Burst_counter >= 1) begin
                    Data_in_enable = 1'b0;
                    Data_out_enable = 1'b0;
                end
            end else if (Burst_length_2 == 1'b1) begin
                if (Burst_counter >= 2) begin
                    Data_in_enable = 1'b0;
                    Data_out_enable = 1'b0;
                end
            end else if (Burst_length_4 == 1'b1) begin
                if (Burst_counter >= 4) begin
                    Data_in_enable = 1'b0;
                    Data_out_enable = 1'b0;
                end
            end else if (Burst_length_8 == 1'b1) begin
                if (Burst_counter >= 8) begin
                    Data_in_enable = 1'b0;
                    Data_out_enable = 1'b0;
                end
            end
        end
    endtask
    
    //**********************将SDRAM内的数据直接输出到外部文件*******************************//

/*    
   integer	sdram_data,ind;


    always@(sdram_r)
	begin
		   sdram_data=$fopen("sdram_data.txt");
		   $display("Sdram dampout begin ",sdram_data);
//		   $fdisplay(sdram_data,"Bank0:");
		   for(ind=0;ind<=mem_sizes;ind=ind+1)
		            $fdisplay(sdram_data,"%h	%b",ind,Bank0[ind]);
//		   $fdisplay(sdram_data,"Bank1:");
		   for(ind=0;ind<=mem_sizes;ind=ind+1)
		            $fdisplay(sdram_data,"%h	%b",ind,Bank1[ind]);
//		   $fdisplay(sdram_data,"Bank2:");
		   for(ind=0;ind<=mem_sizes;ind=ind+1)
		            $fdisplay(sdram_data,"%h	%b",ind,Bank2[ind]);
//	           $fdisplay(sdram_data,"Bank3:");
		   for(ind=0;ind<=mem_sizes;ind=ind+1)
		            $fdisplay(sdram_data,"%h	%b",ind,Bank3[ind]);
		  		    	    	    
		  $fclose("sdram_data.txt");        
	  //->compare;
	  end        
*/
    integer	sdram_data,sdram_mem;
    reg	[23:0]	aa,cc;
    reg	[18:0]	bb,ee;
    
    always@(sdram_r)
	begin
		   $display("Sdram dampout begin ",$realtime);
		   sdram_data=$fopen("sdram_data.txt");
		   for(aa=0;aa<4*(mem_sizes+1);aa=aa+1)
		   	begin
		   	bb=aa[18:0];
			if(aa<=mem_sizes)
				$fdisplay(sdram_data,"%0d	%0h",aa,Bank0[bb]);
			else if(aa<=2*mem_sizes+1)
		            	$fdisplay(sdram_data,"%0d	%0h",aa,Bank1[bb]);
			else if(aa<=3*mem_sizes+2)
				$fdisplay(sdram_data,"%0d	%0h",aa,Bank2[bb]);
			else
				$fdisplay(sdram_data,"%0d	%0h",aa,Bank3[bb]);
		  	end	    	    	    
		  $fclose("sdram_data.txt"); 
		  
		  sdram_mem=$fopen("sdram_mem.txt");
		  for(cc=0;cc<4*(mem_sizes+1);cc=cc+1)
		  	begin
		   	ee=cc[18:0];
			if(cc<=mem_sizes)
				$fdisplay(sdram_mem,"%0h",Bank0[ee]);
			else if(cc<=2*mem_sizes+1)
		            	$fdisplay(sdram_mem,"%0h",Bank1[ee]);
			else if(cc<=3*mem_sizes+2)
				$fdisplay(sdram_mem,"%0h",Bank2[ee]);
			else
				$fdisplay(sdram_mem,"%0h",Bank3[ee]);
		  	end	    	    	    
		  $fclose("sdram_mem.txt");        
	 
	  end        



//    // Timing Parameters for -75 (PC133) and CAS Latency = 2
//    specify
//        specparam
                    tAH  =  0.8,                                        // Addr, Ba Hold Time
                    tAS  =  1.5,                                        // Addr, Ba Setup Time
                    tCH  =  2.5,                                        // Clock High-Level Width
                    tCL  =  2.5,                                        // Clock Low-Level Width
//                    tCK  = 10.0,                                       // Clock Cycle Time  100mhz
//                    tCK  = 7.5,    					// Clock Cycle Time  133mhz
                    tCK  =  7,                				// Clock Cycle Time  143mhz
                    tDH  =  0.8,                                        // Data-in Hold Time
                    tDS  =  1.5,                                        // Data-in Setup Time
                    tCKH =  0.8,                                        // CKE Hold  Time
                    tCKS =  1.5,                                        // CKE Setup Time
                    tCMH =  0.8,                                        // CS#, RAS#, CAS#, WE#, DQM# Hold  Time
                    tCMS =  1.5;                                        // CS#, RAS#, CAS#, WE#, DQM# Setup Time
//                    tAH  =  1,                                        // Addr, Ba Hold Time
//                    tAS  =  1.5,                                        // Addr, Ba Setup Time
//                    tCH  =  1,                                        // Clock High-Level Width
//                    tCL  =  3,                                        // Clock Low-Level Width
                    tCK  = 10.0,                                       // Clock Cycle Time  100mhz
                    tCK  = 7.5,    					// Clock Cycle Time  133mhz
//                    tCK  =  7,                				// Clock Cycle Time  143mhz
//                    tDH  =  1,                                        // Data-in Hold Time
//                    tDS  =  2,                                        // Data-in Setup Time
//                    tCKH =  1,                                        // CKE Hold  Time
//                    tCKS =  2,                                        // CKE Setup Time
//                    tCMH =  0.8,                                        // CS#, RAS#, CAS#, WE#, DQM# Hold  Time
//                    tCMS =  1.5;                                        // CS#, RAS#, CAS#, WE#, DQM# Setup Time
//        $width    (posedge Clk,           tCH);
//        $width    (negedge Clk,           tCL);
//        $period   (negedge Clk,           tCK);
//        $period   (posedge Clk,           tCK);
//        $setuphold(posedge Clk,    Cke,   tCKS, tCKH);
//        $setuphold(posedge Clk,    Cs_n,  tCMS, tCMH);
//        $setuphold(posedge Clk,    Cas_n, tCMS, tCMH);
//        $setuphold(posedge Clk,    Ras_n, tCMS, tCMH);
//        $setuphold(posedge Clk,    We_n,  tCMS, tCMH);
//        $setuphold(posedge Clk,    Addr,  tAS,  tAH);
//        $setuphold(posedge Clk,    Ba,    tAS,  tAH);
//        $setuphold(posedge Clk,    Dqm,   tCMS, tCMH);
//        $setuphold(posedge Dq_chk, Dq,    tDS,  tDH);
//    endspecify

endmodule

         具体PLL核的文件就没必要给了,如果不会配置PLL IP核可以看我往期的文章,我们进入modelsim进行仿真:

Modelsim仿真:

手把手带你实现SDRAM控制器(带Verilog代码)_第5张图片

可以看到,信息栏打印结果告诉我们执行了一次预充电,和八次自刷新以及配置的寄存器参数,模块功能完美实现,并且我们可以查看波形图数据: 

手把手带你实现SDRAM控制器(带Verilog代码)_第6张图片

发现符合预期,模块前仿真阶段设计成功!

        本次单篇内容有些过长了,因此其它部分放在下节详解,通过手把手的分析,我们可以发现,其实数字系统设计并不会很难,我们只要把大的系统分解成小的,然后再把小的使用状态机进行描述,再一步步往上组装,最终可以完成整个系统的设计。

你可能感兴趣的:(fpga开发,学习,嵌入式硬件)