LeetCode 96. 不同的二叉搜索树 | Python

文章目录

  • 96. 不同的二叉搜索树
    • 题目
    • 解题思路
    • 代码实现
    • 实现结果
    • 欢迎关注

96. 不同的二叉搜索树


题目来源:力扣(LeetCode)https://leetcode-cn.com/problems/unique-binary-search-trees

题目


给定一个整数 n,求以 1 … n 为节点组成的二叉搜索树有多少种?

示例:

输入: 3
输出: 5
解释:
给定 n = 3, 一共有 5 种不同结构的二叉搜索树:

   1         3     3      2      1
    \       /     /      / \      \
     3     2     1      1   3      2
    /     /       \                 \
   2     1         2                 3

解题思路


思路:动态规划

由题意可知,当给定有序序列 1…n,构建二叉搜索树,结合示例,可以得出的方案是:在区间 [1 - n] 中,遍历每个数字 i,以这个数字为根,然后将 i 左边序列作为左子树, i 右边序列作为右子树。

现在我们假设,给定的 n 个节点中,存在能构成二叉搜索树的数量为 G(n),设以 i 为根的二叉搜索树的数量为 f(i)。那么我们就可以得到以下的公式:

G(n) = f(1) + f(2) + ... + f(n-1) + f(n)

也就是说,当要求给定序列 1…n 能构成多少二叉搜索树,需要求得 f(i),(1<=i<=n) 的数量,然后将结果累加。

前面说了,以 i 为根节点,那么i 左边序列将作为左子树, i 右边序列作为右子树。在这里,左子树的节点个数有 i-1,而右子树的节点个数有 n-i 个,那么此时:

f(i) = G(i-1) * G(n-i)

这里需要注意的,G(n) 这里的 n 表示的是个数,跟序列的内容并没有关系。所以,上面的可构成左子树,右子树的数量,则由它们的节点数决定。

现在将 f(i) 最上面的公式,得到:

G(n) = G(0) * G(n-1) + G(1) * G(n-2) + ... + G(n-2) * G(1) + G(n-1) * G(0)

其实,这个其实就是卡塔兰数,有兴趣的话,可以了解一下(按个人条件,下方链接均可了解关于卡塔兰数具体的信息)。

https://en.wikipedia.org/wiki/Catalan_number(同上,源自:维基百科)

https://baike.baidu.com/item/catalan(源自:百度百科)

初始化

在这里,要注意边界问题:

  • n = 0 时,这里表示为空树,只有一种情况,所以 G(0) = 1
  • n = 1 时,表示只有一个根,这里也只有一种情况,此时 G(1) = 1

本题具体的代码实现如下。

代码实现


class Solution:
    def numTrees(self, n: int) -> int:
        dp = [0] * (n + 1)

        # 初始化
        dp[0] = 1
        dp[1] = 1

        for i in range(2, n+1):
            for j in range(i+1):
                # 代入公式
                # 注意,这里是累加
                dp[i] += dp[j-1] * dp[i-j]

        return dp[-1]

实现结果


LeetCode 96. 不同的二叉搜索树 | Python_第1张图片

欢迎关注


公众号 【书所集录】

你可能感兴趣的:(LeetCode,leetcode,算法,python,动态规划,不同的二叉搜索树)