常见面试题-Redis专栏(二)


theme: cyanosis

typora-copy-images-to: imgs

Redisson 分布式锁?在项目中哪里使用?多久会进行释放?如何加强一个分布式锁?

答:

首先入门级别的分布式锁是通过 setnx 进行实现,使用 setnx 实现有四个注意点

  1. 需要设置锁的超时时间(如果不设置,在释放锁时,如果机器宕机,会导致锁无法释放)

  2. 需要设置一个唯一 ID,表示这个锁是哪个用户添加的,必须由添加锁的用户释放

    (如果不设置,线程1在执行任务时,可能锁的超时时间已经达到,被自动释放,此时线程2加锁,开始执行业务,但正好线程1执行完毕,释放锁,由于没有唯一ID表示,线程1将线程2加的锁给释放掉了)

  3. 需要锁续命

    有可能锁的过期时间设置的太短,导致业务没有执行完毕,锁就被自动释放,因此要使用锁续命来解决(大概逻辑是使用子线程执行定时任务,定时任务间隔时间要小于 key 的过期时间,子线程隔一段时间判断主线程是否在执行,如果在执行,就重新设置一下过期时间)

  4. 可重入问题:setnx 实现的分布式锁不可重入,这样获取锁的线程在重复进入相同锁的代码块中会造成死锁

而在 Redission 中已经帮我们实现好了分布式锁,下来看一下 Redission 中的分布式锁:

Redission 中获取锁逻辑:

在 Redission 中加锁,通过一系列调用会到达下边这个方法

他的可重入锁的原理也就是使用 hash 结构来存储锁,key 表示锁是否存在,如果已经存在,表示需要重复访问同一把锁,会将 value + 1,即每次重入一次 value 就加 1,退出一次 value 就减 1

下列方法有三个参数分别为:

  • KEYS[1] : 锁名称
  • ARGV[1]: 锁失效时间
  • ARGV[2]: id + “:” + threadId; 锁的小key
     RFuture tryLockInnerAsync(long leaseTime, TimeUnit unit, long threadId, RedisStrictCommand command) {
        internalLockLeaseTime = unit.toMillis(leaseTime);
​
        return commandExecutor.evalWriteAsync(getName(), LongCodec.INSTANCE, command,
                  "if (redis.call('exists', KEYS[1]) == 0) then " +
                      "redis.call('hset', KEYS[1], ARGV[2], 1); " +
                      "redis.call('pexpire', KEYS[1], ARGV[1]); " +
                      "return nil; " +
                  "end; " +
                  "if (redis.call('hexists', KEYS[1], ARGV[2]) == 1) then " +
                      "redis.call('hincrby', KEYS[1], ARGV[2], 1); " +
                      "redis.call('pexpire', KEYS[1], ARGV[1]); " +
                      "return nil; " +
                  "end; " +
                  "return redis.call('pttl', KEYS[1]);",
                    Collections.singletonList(getName()), internalLockLeaseTime, getLockName(threadId));
    }
 
  

Redission 中锁续命原理:

Redission 底层有个看门狗机制,加锁成功后会有一个定时任务,默认锁的失效时间是 30s,该定时任务每隔锁失效时间的 1/3 就会去续约锁时间,也就是每隔 10s 进行锁续命

如何加强一个分布式锁?

也就是如何提升一个分布式锁的性能,分布式锁本质上是将并行操作改为串行,那么我们可以通过使用分段锁来提升性能,比如说有 1000 个库存的话,读入到缓存中将分为 10 份进行存储,即 product_stock_1 = 100, product_stock_2 = 100, ...,给每一份都加上所,那么多个线程来竞争这 10 把锁,比原来竞争 1 把锁的性能提高 10 倍

zset 的底层实现?为什么不用红黑树?

答:

zset 的底层实现是:压缩列表 + 跳表

什么时候使用压缩列表?

  • 有序集合保存的元素个数要小于 128 个;
  • 有序集合保存的所有元素成员的长度都必须小于 64 字节。

否则使用跳表

跳表中每个节点都有多个跳跃指针,因此每个节点的平均跳跃长度较长,可以一次跳过多个节点,当找到大于或等于目标元素的节点后,再使用普通指针开始移动(可以向后移动,也可以向前移动,跳表含有前边节点的指针)寻找目标元素,跳表可以在 O(logn) 的时间内遍历跳表

跳表结构图:

常见面试题-Redis专栏(二)_第1张图片

为什么不用红黑树?

  • 跳表和红黑树的查找时间复杂度都是O(logn),但是红黑树比跳表的插入/删除效率更低

    • 跳表在插入或删除时,只需考虑相邻节点,而红黑树需考虑节点的旋转问题,焦虑较低
  • 跳表实现比红黑树更简单

zset 几个命令的时间复杂度?

答:

  • zadd:O(logn),添加一个元素的时间复杂度是 O(logn)(因为插入元素的话,时间开销都在查找插入位置上,在 zset 中,查找时间复杂度是 O(logn),因此插入复杂度同是)
  • zrange:O(logn + m) ,n 是集合中元素数量,m 是指定范围内的用户数量

redis 里面的命令,比如 setnx 和 setex 还有 zset 中的命令?

答:

zset 中的常用命令为:

  • zadd ...

    向集合 key 中添加元素

  • zrange [withscores]

    查找下标在 start 和 stop 之间的元素,如果后边带上 withscores 参数,会将分数也查询出来

  • zrevrange [withscores]

    将分数从大到小进行查询,和 zrange 查询顺序相反

  • zrangebyscore [withscores]

    返回集合 key 中所有 score 介于 min 和 max 之间的成员,如果后边带上 withscores 参数,会将分数也查询出来

  • setex

    设置 key、value 并且设置过期时间

  • setnx

    仅当 key 不存在时,才将 key 的值设置为 value,成功返回1,失败返回0

缓存怎么保证数据的一致性?

答:

  • 先删除缓存,再更新数据库 (操作简单)

    这种情况造成的缓存不一致为:线程 A 先删除缓存,再去更新数据库,在线程 A 更新数据库之前,如果线程 B 去读取缓存,发现并不存在,去读取数据库,此时读取的是旧数据,再将旧数据写入缓存,此时缓存存储的就是脏数据了。

    使用更新数据库 + 延时双删可以解决此情况的数据不一致,在延时双删中,会删除两次缓存,分为以下几步:

    
    1. 删除缓存
    2. 更新数据库
    3. 睡眠  Thread.sleep()
    4. 再删除缓存
    

    即延时双删在线程 A 更新完数据库之后,休眠一段时间,再去删除缓存中可能存在的脏数据。

    这样第二次删除缓存可能导致线程 A 执行时间过长,第二次可以使用异步去删除缓存

  • 先更新数据库,再删除缓存

    这种情况可能因为线程 A 没有及时删除缓存或者删除缓存失败而导致线程 B 读取到旧数据

    可以使用消息队列来完成:

    1. 先将要删除的缓存值或者是要更新的数据库值暂存到消息队列中
    2. 当程序没有成功删除缓存值或者更新数据库值时,从消息队列中读取这些值,再次进行删除或更新
    3. 如果成功删除缓存或者更新数据库,要将这些值从消息队列中取出,以免重复操作

高级扩展点Canal 监听日志更新 + 定时任务缓存处理,简单概括来说就是 Canal 可以监控 MySQL 的 binlog,当发现数据库的数据发生变化后,就去同步缓存,就可以达到最终的数据一致性了

redis基本数据结构?

答:

有 5 中基本数据结构:字符串、list列表、hash字典、set集合、zset有序集合

基本数据结构添加数据命令:

  • 字符串: set key value [ex seconds | px milliseconds] [nx | xx]

    nx:指定 key 不存在才会设置成功

    xx:指定的 key 必须存在才会设置成功,用于更新 key

  • list:lpush key value [value...] rpush key value [value...]

  • hash: hset key field value 将 key 中的 field 的值设置为 value

  • set: sadd key value [value...]

  • zset:zadd key score value 向 key 中添加一个 value 和 score,根据 score 排序

数据结构基本介绍:

  • list 列表是链表,不是数据
  • set 集合内部的键值对是无序且唯一的

基本数据结构应用场景:

  • 字符串

    • 限速器:防止 DoS 攻击,对 ip 进行访问次数限制,但是无法防止 DDoS 攻击,因为 DDoS 是分布式拒绝服务,使用了不同 ip 不断访问服务器

      
      // 等价于 set 192.168.55.1 ex 60 nx
      // 如果该ip不存在,指定key为ip,value为1,过期时间为60秒
      Boolean exists = redis.set(ip, 1, "ex 60", "nx");
      if(exists != null || redis.incr(ip) <= 5) {
        // 通过访问
      } else {
        // 限流
      }
      
  • list

    • lpush + lpop 实现
    • 列表 rpush + lpoplpush + rpop 实现
    • 阻塞式消息队列 lpush + brpop 实现
  • hash

    • 存储对象数据:key 为对象名称,value 为描述对象属性的 Map,对象属性的修改在 Redis 中就可直接完成
  • set

    • 去重操作
  • zset

    • 用户排行榜
    • 用户点赞统计

你可能感兴趣的:(面试题,redis,数据库,缓存)