当读操作远远高于写操作时,这时候使用读写锁
让读-读
可以并发,提高性能。类似于数据库中的select ... from ... lock in share mode
提供一个数据容器类
分别使用读锁保护数据的read()
方法,写锁保护数据的write()
方法
public class DataContainer {
private Object data;
private ReentrantReadWriteLock rw = new ReentrantReadWriteLock();
private ReentrantReadWriteLock.ReadLock r = rw.readLock();
private ReentrantReadWriteLock.WriteLock w = rw.writeLock();
public Object read() {
log.debug("获取读锁");
r.lock();
try {
log.debug("读取");
sleep(1);
return data;
} finally {
log.debug("释放读锁");
r.unlock();
}
}
public Object write() {
log.debug("获取写锁");
w.lock();
try {
log.debug("写入");
sleep(1);
return data;
} finally {
log.debug("释放写锁");
w.unlock();
}
}
public void sleep(long second) {
try {
Thread.sleep(second * 1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
测试读锁-读锁
可以并发
DataContainer dataContainer = new DataContainer();
new Thread(() -> {
dataContainer.read();
}, "t1").start();
new Thread(() -> {
dataContainer.read();
}, "t2").start();
输出结果,从这里可以看到Thread-0锁定期间,Thread-1的操作不受影响
2022/05/04-14:10:23.505 [t2] c.DataContainer - 获取读锁
2022/05/04-14:10:23.505 [t1] c.DataContainer - 获取读锁
2022/05/04-14:10:23.507 [t1] c.DataContainer - 读取
2022/05/04-14:10:23.507 [t2] c.DataContainer - 读取
2022/05/04-14:10:24.516 [t2] c.DataContainer - 释放读锁
2022/05/04-14:10:24.516 [t1] c.DataContainer - 释放读锁
测试读锁-写锁
相互阻塞
DataContainer dataContainer = new DataContainer();
new Thread(() -> {
dataContainer.read();
}, "t1").start();
new Thread(() -> {
dataContainer.write();
}, "t2").start();
输出结果
2022/05/04-14:11:07.301 [t2] c.DataContainer - 获取写锁
2022/05/04-14:11:07.301 [t1] c.DataContainer - 获取读锁
2022/05/04-14:11:07.305 [t2] c.DataContainer - 写入
2022/05/04-14:11:08.315 [t2] c.DataContainer - 释放写锁
2022/05/04-14:11:08.315 [t1] c.DataContainer - 读取
2022/05/04-14:11:09.326 [t1] c.DataContainer - 释放读锁
写锁-写锁
也是相互阻塞的,这里就不测试了
注意事项
r.lock();
try {
// ...
w.lock();
try {
// ...
} finally {
w.unlock();
}
} finally {
r.unlock();
}
class CachedData {
Object data;
// 是否有效,如果失效,需要重新计算 data
volatile boolean cacheValid;
final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
void processCachedData() {
rwl.readLock().lock();
if (!cacheValid) {
// 获取写锁前必须释放读锁
rwl.readLock().unlock();
rwl.writeLock().lock();
try {
// 判断是否有其它线程已经获取了写锁、更新了缓存, 避免重复更新
if (!cacheValid) {
data = ...
cacheValid = true;
}
// 降级为读锁, 释放写锁, 这样能够让其它线程读取缓存
rwl.readLock().lock();
} finally {
rwl.writeLock().unlock();
}
}
// 自己用完数据, 释放读锁
try {
use(data);
} finally {
rwl.readLock().unlock();
}
}
}
更新时,是先清除缓存还是先更新数据库
先清缓存
先更新数据库
补充一种情况,假设线程A查询数据时恰好缓存数据由于时间到期失效,或是第一次查询
这种情况出现的几率非常小,见facebook论文
class GenericCachedDao<T> {
// HashMap 作为缓存非线程安全, 需要保护
HashMap<SqlPair, T> map = new HashMap<>();
ReentrantReadWriteLock lock = new ReentrantReadWriteLock();
GenericDao genericDao = new GenericDao();
public int update(String sql, Object... params) {
SqlPair key = new SqlPair(sql, params);
// 加写锁, 防止其它线程对缓存读取和更改
lock.writeLock().lock();
try {
int rows = genericDao.update(sql, params);
map.clear();
return rows;
} finally {
lock.writeLock().unlock();
}
}
public T queryOne(Class<T> beanClass, String sql, Object... params) {
SqlPair key = new SqlPair(sql, params);
// 加读锁, 防止其它线程对缓存更改
lock.readLock().lock();
try {
T value = map.get(key);
if (value != null) {
return value;
}
} finally {
lock.readLock().unlock();
}
// 加写锁, 防止其它线程对缓存读取和更改
lock.writeLock().lock();
try {
// get 方法上面部分是可能多个线程进来的, 可能已经向缓存填充了数据
// 为防止重复查询数据库, 再次验证
T value = map.get(key);
if (value == null) {
// 如果没有, 查询数据库
value = genericDao.queryOne(beanClass, sql, params);
map.put(key, value);
}
return value;
} finally {
lock.writeLock().unlock();
}
}
}
// 作为 key 保证其是不可变的
class SqlPair {
private String sql;
private Object[] params;
public SqlPair(String sql, Object[] params) {
this.sql = sql;
this.params = params;
}
@Override
public boolean equals(Object o) {
if (this == o) {
return true;
}
if (o == null || getClass() != o.getClass()) {
return false;
}
SqlPair sqlPair = (SqlPair) o;
return sql.equals(sqlPair.sql) &&
Arrays.equals(params, sqlPair.params);
}
@Override
public int hashCode() {
int result = Objects.hash(sql);
result = 31 * result + Arrays.hashCode(params);
return result;
}
}
注意:
- 以上实现体现的是读写锁的应用,保证缓存和数据库的一致性,但有下面的问题没有考虑
- 适合读多写少,如果写操作比较频繁,以上实现性能较低
- 没有考虑缓存容量
- 没有考虑缓存过期
- 只适合单机
- 并发性还是低,目前只会用一把锁
- 更新方法过于简单粗暴,清空了所有key(考虑按类型分区或重新设计key)
- 乐观锁实现:用CAS去更新
读写锁用的是同一个Sync同步器,因此等待队列,state等也是同一个
t1 w.lock, t2 r.lock
1)t1成功上锁,流程与ReentrantLock加锁相比没有特殊之处,不同的是写状态占了state的低16位,而读锁使用的是state的高16位
2)t2执行r.lock,这时进入读锁的sync.acquireShared(1)流程,首先会进入tryAcquireShared流程,如果有写锁占用,那么tryAcquireShared返回-1表示失败
tryAcquireShared返回值表示
- -1 表示失败
- 0 表示成功,单后继结点不会继续唤醒
- 正数表示成功,而且数值是还有几个后继结点需要唤醒
3)这时会进入sync.doAcquireShared(1)流程,首先也是调用addWaiter添加结点,不同之处在于结点被设置为Node.SHARED模式而非Node.EXCLUSIVE模式,注意此时t2仍处于活跃状态
4)t2会看看自己的结点是不是老二,如果是,还会再次调用tryAcquireShared(1)来尝试获取锁
5)如果没有成功,在doAcquireShared内for(;;)循环一次,把waitStatus改为-1,再for(;;)循环一次尝试tryAcquireShared(1),如果还不成功,那么在parkAndCheckInterrupt()处park
t3 r.lock,t4 w.lock
这种状态下,假设又有t3加读锁和t4加写锁,这期间t1仍然持有锁,就就变成了下面的样子
t1 w.unlock
这是会走到写锁的sync.release(1)流程,调用sync.tryRelease(1)成功,变成下面的样子
接下来回字形唤醒流程sync.unparkSuccessor,即让老二恢复运行,这时t2在doAcquireShared内parkAndCheckInterrupt()处恢复运行
这回再来一次for(;;)执行tryAcquireShared成功,则让读锁计数加一
这时t2已经恢复运行,接下来t2调用setHeadAndPropagate(node, 1),他原本所在结点被设置为头结点
事情还没完,在setHeadAndPropagate方法内还会检查下一个结点是否是shared,如果是则调用
doReleaseShared()将head的状态从-1改为0并唤醒老二,这时t2在doAcquireShared内,parkAndCheckInterrupt()处恢复运行
这回再来一次for(;;)执行tryAcquireShared成功则让读锁计数加一
这时t3已经恢复运行,接下来t3调用setHeadAndPropagate(node, 1),他原本所在的结点被设置为头结点
下一个结点不是shared了,因此不会继续唤醒t4所在结点
t2 r.unlock, t3 r.unlock
t2进入sync.releaseShared(1)中,调用tryReleaseShared(1)让计数减一,但由于计数还不为零
t3进入sync.releaseShared(1)中,调用tryReleaseShared(1)让计数减一,这回计数为零了,进入doReleaseShared()将头结点从-1改为0,并唤醒老二,即
之后t4在acquireQueued中parkAndCheckInterrupt处恢复运行,再次for(;;)这次自己是老二,并且没有其他竞争,修改头结点,流程结束
static final class NonfairSync extends Sync {
// ... 省略无关代码
// 外部类 WriteLock 方法, 方便阅读, 放在此处
public void lock() {
sync.acquire(1);
}
// AQS 继承过来的方法, 方便阅读, 放在此处
public final void acquire(int arg) {
if (
// 尝试获得写锁失败
!tryAcquire(arg) &&
// 将当前线程关联到一个 Node 对象上, 模式为独占模式
// 进入 AQS 队列阻塞
acquireQueued(addWaiter(Node.EXCLUSIVE), arg)
) {
selfInterrupt();
}
}
// Sync 继承过来的方法, 方便阅读, 放在此处
protected final boolean tryAcquire(int acquires) {
// 获得低 16 位, 代表写锁的 state 计数
Thread current = Thread.currentThread();
int c = getState();
int w = exclusiveCount(c);
if (c != 0) {
if (
// c != 0 and w == 0 表示有读锁, 或者
w == 0 ||
// 如果 exclusiveOwnerThread 不是自己
current != getExclusiveOwnerThread()
) {
// 获得锁失败
return false;
}
// 写锁计数超过低 16 位, 报异常
if (w + exclusiveCount(acquires) > MAX_COUNT)
throw new Error("Maximum lock count exceeded");
// 写锁重入, 获得锁成功
setState(c + acquires);
return true;
}
if (
// 判断写锁是否该阻塞, 或者
writerShouldBlock() ||
// 尝试更改计数失败
!compareAndSetState(c, c + acquires)
) {
// 获得锁失败
return false;
}
// 获得锁成功
setExclusiveOwnerThread(current);
return true;
}
// 非公平锁 writerShouldBlock 总是返回 false, 无需阻塞
final boolean writerShouldBlock() {
return false;
}
}
static final class NonfairSync extends Sync {
// ... 省略无关代码
// WriteLock 方法, 方便阅读, 放在此处
public void unlock() {
sync.release(1);
}
// AQS 继承过来的方法, 方便阅读, 放在此处
public final boolean release(int arg) {
// 尝试释放写锁成功
if (tryRelease(arg)) {
// unpark AQS 中等待的线程
Node h = head;
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);
return true;
}
return false;
}
// Sync 继承过来的方法, 方便阅读, 放在此处
protected final boolean tryRelease(int releases) {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
int nextc = getState() - releases;
// 因为可重入的原因, 写锁计数为 0, 才算释放成功
boolean free = exclusiveCount(nextc) == 0;
if (free) {
setExclusiveOwnerThread(null);
}
setState(nextc);
return free;
}
}
static final class NonfairSync extends Sync {
// ReadLock 方法, 方便阅读, 放在此处
public void lock() {
sync.acquireShared(1);
}
// AQS 继承过来的方法, 方便阅读, 放在此处
public final void acquireShared(int arg) {
// tryAcquireShared 返回负数, 表示获取读锁失败
if (tryAcquireShared(arg) < 0) {
doAcquireShared(arg);
}
}
// Sync 继承过来的方法, 方便阅读, 放在此处
protected final int tryAcquireShared(int unused) {
Thread current = Thread.currentThread();
int c = getState();
// 如果是其它线程持有写锁, 获取读锁失败
if (
exclusiveCount(c) != 0 &&
getExclusiveOwnerThread() != current
) {
return -1;
}
int r = sharedCount(c);
if (
// 读锁不该阻塞(如果老二是写锁,读锁该阻塞), 并且
!readerShouldBlock() &&
// 小于读锁计数, 并且
r < MAX_COUNT &&
// 尝试增加计数成功
compareAndSetState(c, c + SHARED_UNIT)
) {
// ... 省略不重要的代码
return 1;
}
return fullTryAcquireShared(current);
}
// 非公平锁 readerShouldBlock 看 AQS 队列中第一个节点是否是写锁
// true 则该阻塞, false 则不阻塞
final boolean readerShouldBlock() {
return apparentlyFirstQueuedIsExclusive();
}
// AQS 继承过来的方法, 方便阅读, 放在此处
// 与 tryAcquireShared 功能类似, 但会不断尝试 for (;;) 获取读锁, 执行过程中无阻塞
final int fullTryAcquireShared(Thread current) {
HoldCounter rh = null;
for (; ; ) {
int c = getState();
if (exclusiveCount(c) != 0) {
if (getExclusiveOwnerThread() != current)
return -1;
} else if (readerShouldBlock()) {
// ... 省略不重要的代码
}
if (sharedCount(c) == MAX_COUNT)
throw new Error("Maximum lock count exceeded");
if (compareAndSetState(c, c + SHARED_UNIT)) {
// ... 省略不重要的代码
return 1;
}
}
}
// AQS 继承过来的方法, 方便阅读, 放在此处
private void doAcquireShared(int arg) {
// 将当前线程关联到一个 Node 对象上, 模式为共享模式
final Node node = addWaiter(Node.SHARED);
boolean failed = true;
try {
boolean interrupted = false;
for (; ; ) {
final Node p = node.predecessor();
if (p == head) {
// 再一次尝试获取读锁
int r = tryAcquireShared(arg);
// 成功
if (r >= 0) {
// ㈠
// r 表示可用资源数, 在这里总是 1 允许传播
//(唤醒 AQS 中下一个 Share 节点)
setHeadAndPropagate(node, r);
p.next = null; // help GC
if (interrupted)
selfInterrupt();
failed = false;
return;
}
}
if (
// 是否在获取读锁失败时阻塞(前一个阶段 waitStatus == Node.SIGNAL)
shouldParkAfterFailedAcquire(p, node) &&
// park 当前线程
parkAndCheckInterrupt()
) {
interrupted = true;
}
}
} finally {
if (failed)
cancelAcquire(node);
}
}
// ㈠ AQS 继承过来的方法, 方便阅读, 放在此处
private void setHeadAndPropagate(Node node, int propagate) {
Node h = head; // Record old head for check below
// 设置自己为 head
setHead(node);
// propagate 表示有共享资源(例如共享读锁或信号量)
// 原 head waitStatus == Node.SIGNAL 或 Node.PROPAGATE
// 现在 head waitStatus == Node.SIGNAL 或 Node.PROPAGATE
if (propagate > 0 || h == null || h.waitStatus < 0 ||
(h = head) == null || h.waitStatus < 0) {
Node s = node.next;
// 如果是最后一个节点或者是等待共享读锁的节点
if (s == null || s.isShared()) {
// 进入 ㈡
doReleaseShared();
}
}
}
// ㈡ AQS 继承过来的方法, 方便阅读, 放在此处
private void doReleaseShared() {
// 如果 head.waitStatus == Node.SIGNAL ==> 0 成功, 下一个节点 unpark
// 如果 head.waitStatus == 0 ==> Node.PROPAGATE, 为了解决 bug, 见后面分析
for (; ; ) {
Node h = head;
// 队列还有节点
if (h != null && h != tail) {
int ws = h.waitStatus;
if (ws == Node.SIGNAL) {
if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
continue; // loop to recheck cases
// 下一个节点 unpark 如果成功获取读锁
// 并且下下个节点还是 shared, 继续 doReleaseShared
unparkSuccessor(h);
} else if (ws == 0 &&
!compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
continue; // loop on failed CAS
}
if (h == head) // loop if head changed
break;
}
}
}
static final class NonfairSync extends Sync {
// ReadLock 方法, 方便阅读, 放在此处
public void unlock() {
sync.releaseShared(1);
}
// AQS 继承过来的方法, 方便阅读, 放在此处
public final boolean releaseShared(int arg) {
if (tryReleaseShared(arg)) {
doReleaseShared();
return true;
}
return false;
}
// Sync 继承过来的方法, 方便阅读, 放在此处
protected final boolean tryReleaseShared(int unused) {
// ... 省略不重要的代码
for (; ; ) {
int c = getState();
int nextc = c - SHARED_UNIT;
if (compareAndSetState(c, nextc)) {
// 读锁的计数不会影响其它获取读锁线程, 但会影响其它获取写锁线程
// 计数为 0 才是真正释放
return nextc == 0;
}
}
}
// AQS 继承过来的方法, 方便阅读, 放在此处
private void doReleaseShared() {
// 如果 head.waitStatus == Node.SIGNAL ==> 0 成功, 下一个节点 unpark
// 如果 head.waitStatus == 0 ==> Node.PROPAGATE
for (; ; ) {
Node h = head;
if (h != null && h != tail) {
int ws = h.waitStatus;
// 如果有其它线程也在释放读锁,那么需要将 waitStatus 先改为 0
// 防止 unparkSuccessor 被多次执行
if (ws == Node.SIGNAL) {
if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
continue; // loop to recheck cases
unparkSuccessor(h);
}
// 如果已经是 0 了,改为 -3,用来解决传播性,见后文信号量 bug 分析
else if (ws == 0 &&
!compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
continue; // loop on failed CAS
}
if (h == head) // loop if head changed
break;
}
}
}