数据结构学习:单链表,顺序表和链表的比较

数据结构学习单链表,顺序表和链表的比较
2006-10-29 16:26
单链表

1、链接存储方法
 链接方式存储的线性表简称为链表(Linked List)。
 链表的具体存储表示为:
  ① 用一组任意的存储单元来存放线性表的结点(这组存储单元既可以是连续的,也可以是不连续的)
  ② 链表中结点的逻辑次序和物理次序不一定相同。为了能正确表示结点间的逻辑关系,在存储每个结点值的同时,还必须存储指示其后继结点的地址(或位置)信息(称为指针(pointer)或链(link))
注意:
  链式存储是最常用的存储方式之一,它不仅可用来表示线性表,而且可用来表示各种非线性的数据结构。

2、链表的结点结构
┌──┬──┐
│data│next│
└──┴──┘
 data域--存放结点值的数据域
 next域--存放结点的直接后继的地址(位置)的指针域(链域)
注意:
  ①链表通过每个结点的链域将线性表的n个结点按其逻辑顺序链接在一起的。
 ②每个结点只有一个链域的链表称为单链表(Single Linked List)。


3、头指针head和终端结点指针域的表示
 单链表中每个结点的存储地址是存放在其前趋结点next域中,而开始结点无前趋,故应设头指针head指向开始结点。
注意:
 链表由头指针唯一确定,单链表可以用头指针的名字来命名。
【例】头指针名是head的链表可称为表head。
  终端结点无后继,故终端结点的指针域为空,即NULL。

4、单链表的一般图示法
 由于我们常常只注重结点间的逻辑顺序,不关心每个结点的实际位置,可以用箭头来表示链域中的指针。

5、单链表类型描述
typedef char DataType; //假设结点的数据域类型为字符
typedef struct node{ //结点类型定义
DataType data; //结点的数据域
struct node *next;//结点的指针域
}ListNode;
typedef ListNode *LinkList;
ListNode *p;
LinkList head;
注意:
 ①LinkList和ListNode *是不同名字的同一个指针类型(命名的不同是为了概念上更明确)
 ②LinkList类型的指针变量head表示它是单链表的头指针
 ③ListNode *类型的指针变量p表示它是指向某一结点的指针

6、指针变量和结点变量

┌────┬────────────┬─────────────┐
│    │    指针变量    │     结点变量     │
├────┼────────────┼─────────────┤
│ 定义 │在变量说明部分显式定义 |在程序执行时,通过标准 │
│ │ │函数malloc生成 │
├────┼────────────┼─────────────┤
│ 取值 │ 非空时,存放某类型结点 │实际存放结点各域内容 │
│ │的地址 │ │
├────┼────────────┼─────────────┤
│操作方式│ 通过指针变量名访问 │ 通过指针生成、访问和释放 │
└────┴────────────┴─────────────┘

①生成结点变量的标准函数
 p=( ListNode *)malloc(sizeof(ListNode));
//函数malloc分配一个类型为ListNode的结点变量的空间,并将其首地址放入指针变量p中
②释放结点变量空间的标准函数
 free(p);//释放p所指的结点变量空间
③结点分量的访问
  利用结点变量的名字*p访问结点分量
方法一:(*p).data和(*p).next
方法二:p-﹥data和p-﹥next
④指针变量p和结点变量*p的关系
  指针变量p的值——结点地址
 结点变量*p的值——结点内容
 (*p).data的值——p指针所指结点的data域的值
 (*p).next的值——*p后继结点的地址
  *((*p).next)——*p后继结点
注意:
  ① 若指针变量p的值为空(NULL),则它不指向任何结点。此时,若通过*p来访问结点就意味着访问一个不存在的变量,从而引起程序的错误。

顺序表和链表的比较

顺序表和链表各有短长。在实际应用中究竟选用哪一种存储结构呢?这要根据具体问题的要求和性质来决定。通常有以下几方面的考虑:
┌───┬───────────────┬───────────────┐
│ │   顺序表    │   链表    │
├─┬─┼───────────────┼───────────────┤
│基│分│静态分配。程序执行之前必须明确│动态分配只要内存空间尚有空闲,│
│于│配│规定存储规模。若线性表长度n变 │就不会产生溢出。因此,当线性表│
│空│方│化较大,则存储规模难于预先确定│的长度变化较大,难以估计其存储│
│间│式│估计过大将造成空间浪费,估计太│规模时,以采用动态链表作为存储│
│考│ │小又将使空间溢出机会增多。 │结构为好。 │
│虑├─┼───────────────┼───────────────┤
│ │存│为1。当线性表的长度变化不大, │<1 │
│ │储│易于事先确定其大小时,为了节约│ │
│ │密│存储空间,宜采用顺序表作为存储│ │
│ │度│结构。 │ │
├─┼─┼───────────────┼───────────────┤
│基│存│随机存取结构,对表中任一结点都│顺序存取结构,链表中的结点,需│
│于│取│可在O(1)时间内直接取得 │从头指针起顺着链扫描才能取得。│
│时│方│线性表的操作主要是进行查找,很│ │
│间│法│少做插入和删除操作时,采用顺序│ │
│考│ │表做存储结构为宜。 │ │
│虑├─┼───────────────┼───────────────┤
│ │插│在顺序表中进行插入和删除,平均│在链表中的任何位置上进行插入和│
│ │入│要移动表中近一半的结点,尤其是│删除,都只需要修改指针。对于频│
│ │删│当每个结点的信息量较大时,移动│繁进行插入和删除的线性表,宜采│
│ │除│结点的时间开销就相当可观。 │用链表做存储结构。若表的插入和│
│ │操│ │删除主要发生在表的首尾两端,则│
│ │作│ │采用尾指针表示的单循环链表为宜│
└─┴─┴───────────────┴───────────────┘
存储密度(Storage Density)是指结点数据本身所占的存储量和整个结点结构所占的存储量之比,即

存储密度=(结点数据本身所占的存储量)/(结点结构所占的存储总量)

你可能感兴趣的:(数据结构)