- Transformer 架构深度剖析
时光旅人01号
人工智能技术科普transformer深度学习人工智能condaopencv计算机视觉
一、Transformer架构核心设计1.1整体架构Transformer由编码器(Encoder)和解码器(Decoder)堆叠而成,每个层包含:多头自注意力(Multi-HeadSelf-Attention)前馈网络(Feed-ForwardNetwork,FFN)残差连接(ResidualConnection)和层归一化(LayerNorm)关键特性:完全基于注意力机制,摒弃了循环和卷积结构
- 《Hello YOLOv8从入门到精通》4, 模型架构和骨干网络Backbone调优实践
Jagua
YOLO
YOLOv8是由Ultralytics开发的最先进的目标检测模型,其模型架构细节包括骨干网络(Backbone)、颈部网络(Neck)和头部网络(Head)三大部分。一、骨干网络(Backbone)Backbone部分负责特征提取,采用了一系列卷积和反卷积层,同时使用了残差连接和瓶颈结构来减小网络的大小并提高性能。YOLOv8的Backbone参考了CSPDarkNet结构,的增强版本,并结合了其
- Vim忍者速成秘卷:让你的键盘冒出残影の奥义
ivwdcwso
操作系统与云原生vim编辑器程序员忍道终端美学效率革命linux
核心原理通过超低延迟配置+肌肉记忆优化+视觉欺骗技术,达成行云流水的操作体验。就像《火影忍者》结印般流畅!⚡残影生成术(基础篇)"️贴地飞行模式(.vimrc极速配置)settimeoutlen=300"快捷键响应时间压缩至300ms(武士刀级响应)setttyfast"激活终端极速传输模式setlazyredraw"执行宏时暂停界面刷新(性能提升50%)"手里剑光标追踪术autocmdCurso
- YOLO系列模型从v1到v10的演进
剑走偏锋o.O
YOLO目标跟踪人工智能
文章目录引言YOLOv1:开创单阶段目标检测先河发布时间与背景核心创新模型架构训练策略与优化YOLOv2:提升精度与速度的平衡发布时间与背景核心创新模型架构训练策略与优化YOLOv3:多尺度检测与残差连接发布时间与背景核心创新模型架构训练策略与优化YOLOv4:引入注意力机制与优化模块发布时间与背景核心创新模型架构训练策略与优化YOLOv5:工程优化与实际应用的结合发布时间与背景核心创新模型架构训
- Chebykan wx 文章阅读
やっはろ
深度学习
文献筛选[1]神经网络:全面基础[2]通过sigmoid函数的超层叠近似[3]多层前馈网络是通用近似器[5]注意力是你所需要的[6]深度残差学习用于图像识别[7]视觉化神经网络的损失景观[8]牙齿模具点云补全通过数据增强和混合RL-GAN[9]强化学习:一项调查[10]使用PySR和SymbolicRegression.jl的科学可解释机器学习[11]Z.Liu,Y.Wang,S.Vaidya,F
- 每天五分钟深度学习pytorch:基于Pytorch搭建ResNet模型的残差块
每天五分钟玩转人工智能
深度学习框架pytorch深度学习pytorch人工智能ResNet机器学习
残差块我们分析一下这个残差块,x经过两个卷积层得到F(x),然后F(x)+x作为残差块的输出,此时就有一个问题,这个问题就是F(x)+x的维度问题,如果图片数据经过两个卷积层之后F(x)变小(height和weight变小)或者通道数发生了变化,那么此时F(x)是没有办法和x相加的,当然我们可以学习前面的GoogLeNet的方式,也就是说卷积之后的F(x)和x一样,大小不变,或者对x变道和F(x)
- Java注解说明书:从正确姿势到防坑指南,让你的代码会说话!
双囍菜菜
Javajavapython开发语言
《Java注解说明书:从正确姿势到防坑指南,让你的代码会说话!》——手把手教你玩转官方小标签,避开90%新手踩过的坑文章目录《Java注解说明书:从正确姿势到防坑指南,让你的代码会说话!》第一章:初识注解——代码世界的智能便利贴1.1注解的前世今生:从纸质标签到数字革命1.2注解的四大核心价值与实现原理第二章:基础三巨头——每个Javaer必须刻进DNA的标签2.1@Override:防手残终极护
- 搜广推校招面经三十八
Y1nhl
搜广推面经算法pytorch推荐算法搜索算法机器学习
字节推荐算法一、场景题:在抖音场景下为用户推荐广告词,吸引用户点击搜索,呈现广告这一流程的关键点以及可能遇到的困难。二、Transformer中对梯度消失或者梯度爆炸的处理在Transformer模型中,梯度消失和梯度爆炸是深度学习中常见的问题,尤其是在处理长序列数据时。为了克服这些问题,Transformer采用了一系列技术:2.1.残差连接(ResidualConnections)每个子层(包
- AdaBoost算法
Mr终游
机器学习算法决策树
目录一、核心原理:二、算法步骤三、关键优势:四.局限与解决五、代码示例(鸢尾花数据集)AdaBoost(AdaptiveBoosting)是一种经典的集成学习算法,通过组合多个弱分类器(如决策树)来构建强分类器。其核心思想是通过迭代优化残差(错误)和动态调整样本权重,逐步提升模型性能。以下是对AdaBoost的简明总结和关键要点:一、核心原理:提升法:通过顺序训练多个弱分类器,每轮专注修正前一个模
- 完整集合经验模态分解(CEEMD)详解
DuHz
人工智能算法机器学习信号处理信息与通信
完整集合经验模态分解(CEEMD)详解目录前言从EMD到EEMD再到CEEMDEMD(经验模态分解)回顾EEMD(集合经验模态分解)的改进与不足CEEMD(完整集合经验模态分解)的原理噪声对(noisepairs)与对称性CEEMD的核心数学表达式与EEMD的主要区别CEEMD算法流程与公式CEEMD分解过程中的详细推导正负噪声加法及EMD展开IMF的最终计算公式残差的平均处理CEEMD的优点与局
- Pytorch实现之LSRGAN,轻量化SRGAN超分辨率SAR
这张生成的图像能检测吗
优质GAN模型训练自己的数据集超分辨率重建人工智能图像处理计算机视觉深度学习pytorch机器学习
简介简介:在SRGAN的基础上设计了一个轻量化的SRGAN模型结构,通过DSConv+CA与残差结构的设计来减少参数量,同时利用SeLU激活函数构造。与多类SRGAN改进不同的是,很少使用BN层。论文题目:LightweightSuper-ResolutionGenerativeAdversarialNetworkforSARImages(SAR图像的轻量级超分辨率生成对抗网络)期刊:Remote
- 《Python百炼成仙》21-30章(不定时跟新)
Monkey_Jun
python安全web安全小说修仙
第廿一章列表开天·可变序列初成不周山的擎天玉柱裂开蛛网纹路,山体内部传出数据结构崩塌的轰鸣。叶军踏着《数据结构真解》残页凌空而立,手中薛香的本命玉尺泛起列表操作的幽光:补天石序列=[五色石]*9补天石序列[3]=息壤#引发链式变异楔子·共工之怒山腹深处涌出猩红的append()玄光,共工残魂在岩浆中咆哮:while天穹漏洞数量>0:补天石序列.append(五色石)天穹漏洞数量-=1叶军挥剑斩断失
- Transformer 代码剖析9 - 解码器模块Decoder (pytorch实现)
lczdyx
Transformer代码剖析transformerpytorch深度学习人工智能python
一、模块架构全景图1.1核心功能定位Transformer解码器是序列生成任务的核心组件,负责根据编码器输出和已生成序列预测下一个目标符号。其独特的三级注意力机制架构使其在机器翻译、文本生成等任务中表现出色。下面是解码器在Transformer架构中的定位示意图:解码器层组件解码器内部结构Transformer自注意力交叉注意力前馈网络残差连接+层归一化嵌入层位置编码解码器层1解码器层2...解码
- 图片生成Prompt编写技巧
赫萝的红苹果
prompt
1.图片情绪(场景氛围)一张图片一般都会有一个情绪基调,因为作画本质上也是在传达一些情绪,一般都会借助图片的氛围去转达。例如:比如家庭聚会一般是欢乐、喜乐融融。断壁残垣一般是悲凉。还有萧瑟、孤寂等。2.补充细节,多使用描述性的形容词描述图片中涉及到的所有元素。使用形容词补充元素的细节,和扩句差不多。例如一条狗,可以加上体型、颜色、种类,一条黄色的很可爱的小小个的中华田园犬。3.指定视角相同的景色,
- ALOAM代码解析laserMapping(二)
大山同学
代码解析SLAM感知定位
文章目录前言1.计算当前帧位置的IJK坐标2.与地图特征点与线段拟合及残差计算2.1.变换点云坐标系2.2.寻找最近邻点2.3.计算最近邻点的中心2.4.计算协方差矩阵2.5.特征值与特征向量分析2.6.判断是否为线特征2.7.添加残差函数3.点到平面拟合与残差计算(LidarPlaneNormFactor)3.1.变换点云坐标系3.2.寻找最近邻点3.3.最小二乘法拟合平面3.4.归一化法向量3
- 【YOLOv11改进[注意力]】引入YOLOv12的A2C2f模块改进v11
Jackilina_Stone
【改进】YOLO系列YOLOpython计算机视觉OD
本文将进行在YOLOv11中引入A2C2f模块魔改v11,文中含全部代码、详细修改方式。助您轻松理解改进的方法。目录一YOLOv121区域注意力(AreaAttention)2R-ELAN(残差高效层聚合网络)3架构优化4实验二魔改YOLOv111整体修改
- ResNet代码详解与具体实现
墨小傲
python人工智能神经网络深度学习
现在在搞一个项目,想将目前模型架构中的vgg换成resnet网络,所以写了这篇文章。代码都是官网的代码,只是对内容进行了解释。1.BasicBlock类中的init()函数是先定义网络架构,forward()的函数是前向传播,实现的功能就是残差块,importtorch.nnasnnimportmathimporttorch.utils.model_zooasmodel_zoo#这个文件内包括6中
- python有限元传热求解_用python实现简单的有限元方法(一)
weixin_39545102
python有限元传热求解
华中师范大学hahakity有限元算法(FiniteElementMethod,简称FEM)是一种非常流行的求解偏微分方程的数值算法。有限元被广泛应用于结构受力分析、复杂边界的麦克斯韦方程求解以及热传导等问题。这一节介绍有限元方法的基本原理,以及如何用Python从头实现一个有限元算法,数值求解麦克斯韦方程。学习内容筑基:加权残差法(WeightedResidualMethod)心法:有限元与有限
- 【深度学习】计算机视觉(CV)-图像分类-ResNet(Residual Network,残差网络)
IT古董
深度学习人工智能深度学习计算机视觉分类
ResNet(ResidualNetwork,残差网络)是一种深度卷积神经网络(CNN)架构,由何恺明(KaimingHe)等人在2015年提出,最初用于ImageNet竞赛,并在分类任务上取得了冠军。ResNet的核心思想是残差学习(ResidualLearning),它通过跳跃连接(SkipConnections)解决了深度神经网络训练中的梯度消失和梯度爆炸问题,使得非常深的网络(如50层、1
- YOLOv8中Bottleneck模块详解
王了了哇
YOLO计算机视觉深度学习pytorchpython
1.Bottleneck模块介绍Bottleneck模块在YOLOv8中的作用是进行特征提取和增强,是网络中的核心构建模块之一。它的主要功能是通过卷积操作来处理输入特征图,并在适当情况下应用残差连接,使得信息能够有效地通过网络层进行传播。2.Bottleneck模块的位置和作用在YOLOv8的网络结构中,Bottleneck模块被多次使用,主要出现在以下几个部分:Backbone部分:在多个层次上
- 光迅科技2019校园招聘笔试题-----汉诺塔问题
L--certain
光迅科技笔试
这道笔试题怎么说呢,本来是一道送分题,结果最后成了送命题。代码写出来了,就是输出不合要求,当时想了一会,没想出来,时间就到了,可惜!问题描述就是普通的汉诺塔问题,就是输出要求有点难搞。(由于手残,题目被删了。。。)简单说一下,就是说输入一个数,表示几个盘子,输出,先输出总共需要几步,再输出每一步的过程。我当时写的代码如下:num=int(input())res=0defmove(n,a,b,c):
- 【深入探讨 ResNet:解决深度神经网络训练问题的革命性架构】
机器学习司猫白
深度学习人工智能resnet神经网络残差
深入探讨ResNet:解决深度神经网络训练问题的革命性架构随着深度学习的快速发展,卷积神经网络(CNN)已经成为图像识别、目标检测等计算机视觉任务的主力军。然而,随着网络层数的增加,训练深层网络变得愈加困难,主要问题是“梯度消失”和“梯度爆炸”问题。幸运的是,ResNet(ResidualNetworks)通过引入“残差学习”概念,成功地解决了这些问题,极大地推动了深度学习的发展。本文将详细介绍R
- 牧神记(校对版全本)- 热门小说分享- 电子书
jiswordsman
生活
大墟的祖训说,天黑,别出门。大墟残老村的老弱病残们从江边捡到了一个婴儿,取名秦牧,含辛茹苦将他养大。这一天夜幕降临,黑暗笼罩大墟,秦牧走出了家门……做个春风中荡漾的反派吧!瞎子对他说。秦牧的反派之路,正在崛起!全书简介天魔教教主夫人司幼幽于新婚之夜暗害教主历天行,夺走镇教圣典后不知所终,追查多年的少年祖师来到了神秘的大墟,机缘巧合下迎来了少教主秦牧,由九位隐世高手抚养长大的蛮荒少年由此踏上了未知的
- 【Transformer】小白入门指南
静静喜欢大白
随记医疗影像transformer深度学习人工智能
目录1、简介2、Transformer解决问题技术概览核心组成自注意力机制(Self-AttentionMechanism)多头注意力机制(Multi-HeadAttention)前馈神经网络(Feed-ForwardNeuralNetwork)位置编码(PositionalEncoding)残差连接与标准化框架认识1.输入输出2.Encoder3.Decoder4.训练过程5.Positione
- 大型语言模型的核心机制解析
耶耶Norsea
网络杂烩人工智能Deepseek
摘要大型语言模型的核心机制依赖于Transformer架构,该架构通过嵌入层将输入数据转换为向量形式,并结合位置编码以保留序列中单词的顺序信息。随后,这些向量进入多头自注意力层,能够同时关注输入序列的不同部分。自注意力层的输出经过残差连接和层归一化处理,以增强模型的学习能力和稳定性。接着,数据流经前馈网络进一步处理,最终再次通过残差连接和层归一化,得到编码器层的输出。模型性能高度依赖大规模和高质量
- 免费!满血版DeepSeek丝滑畅玩,低门槛实现671B-R1/V3自由
量子位
想快速顺畅上手DeepSeek还不踩坑?“真·满血DeepSeek-671B-R1/V3解决方案”来了!它能解决的问题包括:服务器总繁忙充了钱却被残血模型欺骗费力拉新,遇上代金券失效背刺不懂代码,不会使用API接口模型不能联网查询实时信息数据隐私要求高,不想上传外网潞晨云官方现在提供以下服务:免费通道:不用拉新、不计代金券、不用充值。联网搜索:在线点击即用,体验加强版满血模型。无代码:在线交互体验
- Visual Studio 2017 、2019安装Windows SDK失败的解决办法(改盘符引起)
发狂的蜗牛
c++visualstudiowindowside
如果是改盘符出错就请往下看,如果不是就别往下看了这是血泪踩出来的坑,希望有所帮助。我是手残把电脑盘符改了,然后vs就开始疯狂报错,百试无果、百度不出,果断放弃,刚开始是安装的2017,卸载完后安装的2019,安好后就开始报fatalerrorC1083:无法打开包括文件:“corecrt.h”:Nosuchfileordirectory然后去看日志就是安装WindowsSDK失败(这是2019报的
- MobileNetV2: Inverted Residuals and Linear Bottlenecks
TAICHIFEI
Paper人工智能计算机视觉
Link:https://arxiv.org/abs/1801.04381这篇文章是一篇关于MobileNetV2的学术论文,主要介绍了MobileNetV2的架构设计及其在图像分类、目标检测和语义分割任务中的应用。以下是对这些核心内容的简要概述:MobileNetV2架构设计:提出了一种新的神经网络模块——倒残差结构(InvertedResiduals),其中的快捷连接位于瓶颈层之间。使用轻量级
- deseq2进行差异分析时的分组问题
请你喝好果汁641
RNA-seq学习
这段代码是使用DESeq2包进行RNA-Seq数据差异表达分析的示例。它展示了如何在不同实验设计下进行差异表达分析,包括两组比较、两条件两基因型的交互作用,以及两条件三基因型的分析。示例1:两组比较#创建一个示例数据集,包含4个样本dds=1.10中,所选的阈值是过滤器的最低分位数,其中拒绝数接近拟合曲线在过滤器分位数上的峰值。“接近”定义为在1个残差标准差内。对于未通过过滤阈值的基因,调整后的p
- 深度学习查漏补缺:1.梯度消失、梯度爆炸和残差块
nnerddboy
白话机器学习深度学习人工智能
一、梯度消失梯度消失的根本原因在于激活函数的性质和链式法则的计算:激活函数的导数很小:常见的激活函数(例如Sigmoid和Tanh)在输入较大或较小时,输出趋于饱和(Sigmoid的输出趋于0或1),其导数接近于0。在反向传播中,每一层的梯度都会乘以激活函数的导数。如果导数很小,乘积就会导致梯度逐渐变小。链式法则的多次相乘:假设网络有nn层,梯度从输出层传到第ii层时,会经历多次链式相乘:如果每一
- linux系统服务器下jsp传参数乱码
3213213333332132
javajsplinuxwindowsxml
在一次解决乱码问题中, 发现jsp在windows下用js原生的方法进行编码没有问题,但是到了linux下就有问题, escape,encodeURI,encodeURIComponent等都解决不了问题
但是我想了下既然原生的方法不行,我用el标签的方式对中文参数进行加密解密总该可以吧。于是用了java的java.net.URLDecoder,结果还是乱码,最后在绝望之际,用了下面的方法解决了
- Spring 注解区别以及应用
BlueSkator
spring
1. @Autowired
@Autowired是根据类型进行自动装配的。如果当Spring上下文中存在不止一个UserDao类型的bean,或者不存在UserDao类型的bean,会抛出 BeanCreationException异常,这时可以通过在该属性上再加一个@Qualifier注解来声明唯一的id解决问题。
2. @Qualifier
当spring中存在至少一个匹
- printf和sprintf的应用
dcj3sjt126com
PHPsprintfprintf
<?php
printf('b: %b <br>c: %c <br>d: %d <bf>f: %f', 80,80, 80, 80);
echo '<br />';
printf('%0.2f <br>%+d <br>%0.2f <br>', 8, 8, 1235.456);
printf('th
- config.getInitParameter
171815164
parameter
web.xml
<servlet>
<servlet-name>servlet1</servlet-name>
<jsp-file>/index.jsp</jsp-file>
<init-param>
<param-name>str</param-name>
- Ant标签详解--基础操作
g21121
ant
Ant的一些核心概念:
build.xml:构建文件是以XML 文件来描述的,默认构建文件名为build.xml。 project:每个构建文
- [简单]代码片段_数据合并
53873039oycg
代码
合并规则:删除家长phone为空的记录,若一个家长对应多个孩子,保留一条家长记录,家长id修改为phone,对应关系也要修改。
代码如下:
- java 通信技术
云端月影
Java 远程通信技术
在分布式服务框架中,一个最基础的问题就是远程服务是怎么通讯的,在Java领域中有很多可实现远程通讯的技术,例如:RMI、MINA、ESB、Burlap、Hessian、SOAP、EJB和JMS等,这些名词之间到底是些什么关系呢,它们背后到底是基于什么原理实现的呢,了解这些是实现分布式服务框架的基础知识,而如果在性能上有高的要求的话,那深入了解这些技术背后的机制就是必须的了,在这篇blog中我们将来
- string与StringBuilder 性能差距到底有多大
aijuans
之前也看过一些对string与StringBuilder的性能分析,总感觉这个应该对整体性能不会产生多大的影响,所以就一直没有关注这块!
由于学程序初期最先接触的string拼接,所以就一直没改变过自己的习惯!
- 今天碰到 java.util.ConcurrentModificationException 异常
antonyup_2006
java多线程工作IBM
今天改bug,其中有个实现是要对map进行循环,然后有删除操作,代码如下:
Iterator<ListItem> iter = ItemMap.keySet.iterator();
while(iter.hasNext()){
ListItem it = iter.next();
//...一些逻辑操作
ItemMap.remove(it);
}
结果运行报Con
- PL/SQL的类型和JDBC操作数据库
百合不是茶
PL/SQL表标量类型游标PL/SQL记录
PL/SQL的标量类型:
字符,数字,时间,布尔,%type五中类型的
--标量:数据库中预定义类型的变量
--定义一个变长字符串
v_ename varchar2(10);
--定义一个小数,范围 -9999.99~9999.99
v_sal number(6,2);
--定义一个小数并给一个初始值为5.4 :=是pl/sql的赋值号
- Mockito:一个强大的用于 Java 开发的模拟测试框架实例
bijian1013
mockito单元测试
Mockito框架:
Mockito是一个基于MIT协议的开源java测试框架。 Mockito区别于其他模拟框架的地方主要是允许开发者在没有建立“预期”时验证被测系统的行为。对于mock对象的一个评价是测试系统的测
- 精通Oracle10编程SQL(10)处理例外
bijian1013
oracle数据库plsql
/*
*处理例外
*/
--例外简介
--处理例外-传递例外
declare
v_ename emp.ename%TYPE;
begin
SELECT ename INTO v_ename FROM emp
where empno=&no;
dbms_output.put_line('雇员名:'||v_ename);
exceptio
- 【Java】Java执行远程机器上Linux命令
bit1129
linux命令
Java使用ethz通过ssh2执行远程机器Linux上命令,
封装定义Linux机器的环境信息
package com.tom;
import java.io.File;
public class Env {
private String hostaddr; //Linux机器的IP地址
private Integer po
- java通信之Socket通信基础
白糖_
javasocket网络协议
正处于网络环境下的两个程序,它们之间通过一个交互的连接来实现数据通信。每一个连接的通信端叫做一个Socket。一个完整的Socket通信程序应该包含以下几个步骤:
①创建Socket;
②打开连接到Socket的输入输出流;
④按照一定的协议对Socket进行读写操作;
④关闭Socket。
Socket通信分两部分:服务器端和客户端。服务器端必须优先启动,然后等待soc
- angular.bind
boyitech
AngularJSangular.bindAngularJS APIbind
angular.bind 描述: 上下文,函数以及参数动态绑定,返回值为绑定之后的函数. 其中args是可选的动态参数,self在fn中使用this调用。 使用方法: angular.bind(se
- java-13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class KickOutBadGuys {
/**
* 题目:13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
* Maybe you can find out
- Redis.conf配置文件及相关项说明(自查备用)
Kai_Ge
redis
Redis.conf配置文件及相关项说明
# Redis configuration file example
# Note on units: when memory size is needed, it is possible to specifiy
# it in the usual form of 1k 5GB 4M and so forth:
#
- [强人工智能]实现大规模拓扑分析是实现强人工智能的前奏
comsci
人工智能
真不好意思,各位朋友...博客再次更新...
节点数量太少,网络的分析和处理能力肯定不足,在面对机器人控制的需求方面,显得力不从心....
但是,节点数太多,对拓扑数据处理的要求又很高,设计目标也很高,实现起来难度颇大...
- 记录一些常用的函数
dai_lm
java
public static String convertInputStreamToString(InputStream is) {
StringBuilder result = new StringBuilder();
if (is != null)
try {
InputStreamReader inputReader = new InputStreamRead
- Hadoop中小规模集群的并行计算缺陷
datamachine
mapreducehadoop并行计算
注:写这篇文章的初衷是因为Hadoop炒得有点太热,很多用户现有数据规模并不适用于Hadoop,但迫于扩容压力和去IOE(Hadoop的廉价扩展的确非常有吸引力)而尝试。尝试永远是件正确的事儿,但有时候不用太突进,可以调优或调需求,发挥现有系统的最大效用为上策。
-----------------------------------------------------------------
- 小学4年级英语单词背诵第二课
dcj3sjt126com
englishword
egg 蛋
twenty 二十
any 任何
well 健康的,好
twelve 十二
farm 农场
every 每一个
back 向后,回
fast 快速的
whose 谁的
much 许多
flower 花
watch 手表
very 非常,很
sport 运动
Chinese 中国的
- 自己实践了github的webhooks, linux上面的权限需要注意
dcj3sjt126com
githubwebhook
环境, 阿里云服务器
1. 本地创建项目, push到github服务器上面
2. 生成www用户的密钥
sudo -u www ssh-keygen -t rsa -C "xxx@xx.com"
3. 将密钥添加到github帐号的SSH_KEYS里面
3. 用www用户执行克隆, 源使
- Java冒泡排序
蕃薯耀
冒泡排序Java冒泡排序Java排序
冒泡排序
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 10:40:14 星期二
http://fanshuyao.iteye.com/
- Excle读取数据转换为实体List【基于apache-poi】
hanqunfeng
apache
1.依赖apache-poi
2.支持xls和xlsx
3.支持按属性名称绑定数据值
4.支持从指定行、列开始读取
5.支持同时读取多个sheet
6.具体使用方式参见org.cpframework.utils.excelreader.CP_ExcelReaderUtilTest.java
比如:
Str
- 3个处于草稿阶段的Javascript API介绍
jackyrong
JavaScript
原文:
http://www.sitepoint.com/3-new-javascript-apis-may-want-follow/?utm_source=html5weekly&utm_medium=email
本文中,介绍3个仍然处于草稿阶段,但应该值得关注的Javascript API.
1) Web Alarm API
&
- 6个创建Web应用程序的高效PHP框架
lampcy
Web框架PHP
以下是创建Web应用程序的PHP框架,有coder bay网站整理推荐:
1. CakePHP
CakePHP是一个PHP快速开发框架,它提供了一个用于开发、维护和部署应用程序的可扩展体系。CakePHP使用了众所周知的设计模式,如MVC和ORM,降低了开发成本,并减少了开发人员写代码的工作量。
2. CodeIgniter
CodeIgniter是一个非常小且功能强大的PHP框架,适合需
- 评"救市后中国股市新乱象泛起"谣言
nannan408
首先来看百度百家一位易姓作者的新闻:
三个多星期来股市持续暴跌,跌得投资者及上市公司都处于极度的恐慌和焦虑中,都要寻找自保及规避风险的方式。面对股市之危机,政府突然进入市场救市,希望以此来重建市场信心,以此来扭转股市持续暴跌的预期。而政府进入市场后,由于市场运作方式发生了巨大变化,投资者及上市公司为了自保及为了应对这种变化,中国股市新的乱象也自然产生。
首先,中国股市这两天
- 页面全屏遮罩的实现 方式
Rainbow702
htmlcss遮罩mask
之前做了一个页面,在点击了某个按钮之后,要求页面出现一个全屏遮罩,一开始使用了position:absolute来实现的。当时因为画面大小是固定的,不可以resize的,所以,没有发现问题。
最近用了同样的做法做了一个遮罩,但是画面是可以进行resize的,所以就发现了一个问题,当画面被reisze到浏览器出现了滚动条的时候,就发现,用absolute 的做法是有问题的。后来改成fixed定位就
- 关于angularjs的点滴
tntxia
AngularJS
angular是一个新兴的JS框架,和以往的框架不同的事,Angularjs更注重于js的建模,管理,同时也提供大量的组件帮助用户组建商业化程序,是一种值得研究的JS框架。
Angularjs使我们可以使用MVC的模式来写JS。Angularjs现在由谷歌来维护。
这里我们来简单的探讨一下它的应用。
首先使用Angularjs我
- Nutz--->>反复新建ioc容器的后果
xiaoxiao1992428
DAOmvcIOCnutz
问题:
public class DaoZ {
public static Dao dao() { // 每当需要使用dao的时候就取一次
Ioc ioc = new NutIoc(new JsonLoader("dao.js"));
return ioc.get(