- 深度学习torch之19种优化算法(optimizer)解析
@Mr_LiuYang
论文阅读深度学习optimizerAdam学习率调整优化算法
提示:有谬误请指正摘要本博客详细介绍了多种常见的深度学习优化算法,包括经典的LBFGS、Rprop、Adagrad、RMSprop、Adadelta、ASGD、Adamax、Adam、AdamW、NAdam、RAdam以及SparseAdam等,通过对这些算法的公式和参数说明进行详细解析,博客旨在为机器学习工程师和研究人员提供清晰的理论指导,帮助读者选择合适的优化算法提升模型训练效率。父类定义Op
- 资本资产定价模型(CAPM, Capital Asset Pricing Model)通俗解析
阿正的梦工坊
Finance金融
现代资产定价理论:CAPM模型通俗解析在金融领域,如何定价一个资产(如股票、债券等)是一个至关重要的问题。而资本资产定价模型(CAPM,CapitalAssetPricingModel)就是现代资产定价理论中的一块基石。它帮助我们理解不同资产的风险与回报之间的关系,以及如何在投资组合中分配资金以获得最优的回报。今天,我们来一起通俗易懂地探讨一下CAPM模型的原理、公式、以及它的实际应用。CAPM模
- CCF-CSP真题202206-归一化处理/寻宝大冒险
chaser&upper
一研为定Algorithm算法c++
CCF-CSP真题202206归一化处理寻宝大冒险Rederence归一化处理数学题:直接计算平均值、方差、按公式计算即可!7-42930-22126541000-0.74855103790736130.04504284674812264-0.7378629047806881-0.7966476369773906-0.70579850540066861.00964686143037751.9341
- ColD Fusion,分布式多任务微调的协同 “密码”
人工智能
ColDFusion,分布式多任务微调的协同“密码”发布时间:2025-02-19近日热文:1.全网最全的神经网络数学原理(代码和公式)直观解释2.大模型进化史:从Transformer到DeepSeek-R1的AI变革之路3.2W8000字深度剖析25种RAG变体:全网最全~没有之一知乎【柏企】公众号【柏企科技说】【柏企阅文】在预训练模型的基础上进行改进,有望提升所有基于它微调的模型性能。然而,
- 代码随想录2.18-2.19
我会非常幸运
代码随想录跟练记录算法c++力扣数据结构开发语言
动态规划动态规划题目类型:基础(包括斐波那契类)背包打家劫舍股票子序列动规五部曲:(1)dp数组以及下表的含义(2)递推公式(3)dp数组如何初始化(4)遍历顺序:背包类尤其重要,两层for循环,先遍历背包再遍历物体(5)打印dp数组:看看dp数组是否正确509.斐波那契数70.爬楼梯分析之后发现就是斐波那契数的问题。这道题难点在于递推公式拓展:如果一步可以走m个台阶,如何做爬楼梯拓展就是一步一个
- AI架构师必知必会系列:强化学习在金融领域的应用
AI天才研究院
AI实战AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
文章目录AI架构师必知必会系列:强化学习在金融领域的应用1.背景介绍1.1问题的由来1.2研究现状1.3研究意义1.4本文结构2.核心概念与联系1.强化学习交易系统的总体架构2.强化学习模型训练流程3.强化学习风控系统架构3.核心算法原理&具体操作步骤3.1算法原理概述3.1.1Q学习3.1.2REINFORCE3.1.3A3C3.2算法步骤详解3.3算法优缺点3.4算法应用领域4.数学模型和公式
- 债券到期收益率计算
周纠纠
金融科技-计算机相关python深度学习
债券到期收益率YTM计算公式Python实现计算公式Python实现importscipy.optimizeassoimportnumpyasnp'''计算债券到期收益率的函数PV:表示债券全价;C:票面年利息;k:年付息频率;y:到期收益率;M:债券面值;T:债券期限(年)'''defYTM(PV,C,k,M,T
- 期权帮|如何理解股指期货主力合约基差?
qiquandongkh
区块链数据挖掘人工智能大数据
锦鲤三三每日分享期权知识,帮助期权新手及时有效地掌握即市趋势与新资讯!如何理解股指期货主力合约基差?股指期货主力合约基差是指当前主力期货合约的价格和其对应的现货股指之间的价格差异。具体计算公式为:基差=期货价格-现货价格。(1)正基差:当期货价格高于现货价格时,形成正基差。这可能表明市场预期未来股票指数价值将上升,或者现货市场供应紧张,导致现货价格相对较低。(2)负基差:当期货价格低于现货价格时,
- Python 函数-调用函数
赔罪
Python系统学习python开发语言
目录抽象调用函数数据类型转换练习小结我们知道圆的面积计算公式为:S=πr2当我们知道半径r的值时,就可以根据公式计算出面积。假设我们需要计算3个不同大小的圆的面积:r1=12.34r2=9.08r3=73.1s1=3.14*r1*r1s2=3.14*r2*r2s3=3.14*r3*r3当代码出现有规律的重复的时候,你就需要当心了,每次写3.14*x*x不仅很麻烦,而且,如果要把3.14改成3.14
- 强化学习:原理、概念与代码实践
AndrewHZ
深度学习新浪潮人工智能深度学习强化学习机器学习算法deepseek
一、引言强化学习(ReinforcementLearning)作为机器学习的一个重要分支,旨在通过智能体(agent)与环境的交互,学习到最优的行为策略,以最大化长期累积奖励。它在机器人控制、游戏、自动驾驶、资源管理等众多领域都取得了显著的成功。本文将深入介绍强化学习的数学原理、核心概念,并通过公式推导来加深理解,同时结合一个具体的实例,使用Python语言进行代码实现,帮助读者全面掌握强化学习的
- 2.17 滴滴后两道笔试题目分析
qq_87109145
算法c++java笔记求职招聘python
第一题和第二题比较简单,这里不做分享第三题相当于是一个特殊的等比数列,对这个等比数列求一下求和公式,然后当n趋于无穷时可以化掉一些项数,然后求和即可第四题通过差分可以求出每个房子需要经过的次数,然后比较是要买这个房子还是交租金即可。关注我,不定时更新各类笔试题目,有任何其他笔试题目辅助需要的可以私我~
- 基于 Spring Cloud + Sentinel 的全面流量治理方案
power-辰南
java技术架构师成长专栏springcloudsentinelspring流量治理
一、精准评估系统最大负载1.流量建模历史日志分析流量特征提取业务场景拆解流量模型构建容量预测模型实施方法:使用ELK分析6个月Nginx日志,提取分时/分业务QPS曲线构建典型场景模型:日常流量(正态分布)、促销流量(脉冲模型)、恶意攻击(毛刺识别)容量公式:单实例容量=(CPU核心数*1000ms)/平均RT(ms)2.数据模拟与环境搭建#使用tcpcopy复制生产流量./tcpcopy-x80
- 神经网络常见激活函数 10-GELU函数
亲持红叶
神经网络常见激活函数神经网络neo4j人工智能
GELU高斯误差线性单元(Gaussianerrorlinearunit)函数+导函数GELU函数的公式(近似表达式)GELU(x)=x∗P(X<=x)=x∗Φ(x)\rmGELU(x)=x*P(X<=x)=x*\Phi(x)GELU(x)=x∗P(X<=x)=x∗Φ(x)其中Φ(x)\Phi(x)Φ(x)指的是x的高斯正太分布的累积分布函数(CDF),进一步地,可得该函数的具体表达为x∗P(X<
- 博客搭建之路:next主题数学公式问题
后端
next主题数学公式问题我写的都是一些编程相关的文章,有些文章里是存在数学公式的,我在Typora软件中写的时候显示的是对的,但是hexo将markdown转为html后在页面上就没有数学公式的格式了。查找next配置发现有一个渲染数学公式的配置math:#Default(true)willloadmathjax/katexscriptondemand.#Thatisitonlyrendertho
- Excel—“撤销工作表保护密码”的破解并获取原始密码(转载修改)
Wiktok
excel
在日常工作中,您是否遇到过这样的情况:您用Excel编制的报表、表格、程序等,在单元格中设置了公式、函数等,为了防止其他人修改您的设置或者防止您自己无意中修改,您可能会使用Excel的工作表保护功能,但时间久了保护密码容易忘记,这该怎么办?有时您从网上下载的Excel格式的小程序,您想修改,但是作者加了工作表保护密码,怎么办?您只要按照以下步骤操作,Excel工作表保护密码瞬间即破!关于原文章的一
- 功率因素和电费的关系
能源革命
能源物联网能源电力系统
功率因数与电费之间存在直接的关系,具体体现在功率因数调整电费上。功率因数调整电费的定义功率因数调整电费是指根据用户功率因数的水平高低,对用户的电费进行减收或增收的费用。这种调整机制旨在鼓励用户提高功率因数,减少无功功率的消耗,从而降低电力系统的负担。功率因数对电费的影响电费计算公式:基本电费:根据用户的用电量和电价计算得出。功率因数调整电费:根据用户的功率因数与标准值的差异,按照一定的比例对基本电
- stm32超声波模块
想要成为糕手。
stm32单片机嵌入式硬件
HC-SR04超声波测距模块资料1.HC-SR04简介HC-SR04是一种常见的超声波测距传感器,它通过超声波反射测量物体的距离,广泛应用于机器人避障、液位测量、物联网设备等领域。2.HC-SR04主要参数工作电压:5VDC工作电流:15mA测量范围:2cm-400cm测距精度:±3mm工作频率:40kHz探测角度:停止计数器计数8.通过计数器的值计算得出超声波测量距离距离公式:高电平持续时间·声
- 《Python制作动态爱心粒子特效》
后端工匠之道
Python爱心代码pythonpygame开发语言python表白初学者入门生活爱心代码
一、实现思路粒子效果:–使用Pygame模拟粒子运动,粒子会以爱心的轨迹分布并运动。爱心公式:爱心的数学公式:x=16sin3(t),y=13cos(t)−5cos(2t)−2cos(3t)−cos(4t)参数tt的范围决定爱心形状。动态效果:粒子会从爱心轨迹出发,模拟旋转或扩散运动。二、完整代码后台私信三、运行效果运行代码后,你将看到:粒子围绕爱心形状分布,并不断扩散。爱心形状动态出现,粒子会随
- 互信息的定义与公式
亲持红叶
信息论相关机器学习人工智能
互信息定义公式从条件熵中我们知道,当获取的信息和要研究的食物”有关系时“,这些信息才能帮助我们消除不确定性。如何衡量获取信息和要研究事物“有关系”呢?比如常识告诉我们,一个随机事件“今天深圳下雨”和另一个随机事件“过去24小时深圳空气湿度”相关性很大,但是相关性到底有多大?怎么衡量?再比如“过去24小时深圳空气湿度”似乎就和“北京天气”相关性不大。香农在信息论中提出”互信息“的概念作为两个随机事件
- AIMv2:多模态自回归预训练的视觉新突破
人工智能
AIMv2:多模态自回归预训练的视觉新突破阅读时长:19分钟发布时间:2025-02-17近日热文:全网最全的神经网络数学原理(代码和公式)直观解释欢迎关注知乎和公众号的专栏内容LLM架构专栏知乎LLM专栏知乎【柏企】公众号【柏企科技说】【柏企阅文】导言视觉模型在人工智能领域的地位愈发重要,从图像识别、目标检测到多模态理解,其应用场景不断拓展。在大规模数据集上进行预训练,能助力模型学习丰富的视觉特
- 深入了解与全面使用DeepSeek:从基础到高级应用
一位卑微的码农
人工智能大数据java-eespringboot
引言随着AI技术的发展,DeepSeek作为一款先进的智能助手,为用户提供了强大的文本生成、代码分析、数学公式处理等能力。本文将详细介绍DeepSeek的基础知识、安装配置、API调用方法以及高级应用技巧,帮助你充分挖掘这一工具的潜力。一、认识DeepSeek1.1DeepSeek简介DeepSeek是由深度求索公司开发的人工智能平台,它支持三种主要模式:基础模型(V3)、深度思考(R1)和联网搜
- 【数值模型后处理系列】通风系数计算及垂直层插值
北潇
数值模型Python实用基础技能pythonWRF
一、通风系数1.1通风系数简介通风系数(VentilationCoefficient,VC)可以用来表征扩散条件,其计算公式如下(参考USIyerandPErnestRaj的文章):其中mixingdepth选用WRF输出的边界层高度(PBLH),meanwindspeed近似用边界层顶的风速与地面风速做平均(当然也可多选几层)。1.2Python代码实现VC的计算计算VC的示例代码:fromne
- 【机器学习】多元线性回归
T0uken
Python全栈开发1024程序员节机器学习算法线性回归
在实际应用中,许多问题都包含多个特征(输入变量),而不仅仅是单个输入变量。多元线性回归是线性回归的扩展,它能够处理多个输入特征并建立它们与目标变量的线性关系。本教程将系统性推演多元线性回归,包括向量化处理、特征放缩、梯度下降的收敛性和学习率选择等,并使用numpy实现。最后,我们会通过sklearn快速实现多元线性回归模型。多元线性回归模型简介多元线性回归的模型公式为:y=X⋅w+by=X\cdo
- PCS的dq坐标系控制方程化简推导
weixin_42668920
电力电子算法算法电力电子
αβ坐标系下的控制方程为:Uαβ–Eαβ=RIαβ+Ld(Iαβ)/dtUαβ–Eαβ-RIαβ=Ld(Iαβ)/dt令Uαβ–Eαβ-RIαβ=Xαβ有:Xαβ=Ld(Iαβ)/dt根据dq逆变换公式Xαβ=[cosθ-sinθ][Xd][sinθcosθ][Xq]得到Xα=Xdcosθ–XqsinθXβ=Xdsinθ+Xqcos带入Xαβ=Ld(Iαβ)/dt得到Xdcosθ–Xqsinθ=L
- 【机器学习】无监督学习算法之:K均值聚类
Carl_奕然
机器学习算法学习
K均值聚类1、引言2、K均值聚类2.1定义2.2原理2.3实现方式2.4算法公式2.4.1距离计算公式2.4.1中心点计算公式2.5代码示例3、总结1、引言小屌丝:鱼哥,K均值聚类我不懂,能不能给我讲一讲?小鱼:行,可以小屌丝:额…今天咋直接就答应了?小鱼:不然呢?小屌丝:有啥条件,直接说,小鱼:没有小屌丝:这咋的了,不提条件,我可不踏实小鱼:你看看你,我不提条件,你还不踏实,那你这是非让我提条件
- go语言:实现hexagonal numbers六边形数算法(附完整源码)
源代码大师
go算法实战教程golang算法开发语言
go语言:实现hexagonalnumbers六边形数算法代码说明:如何运行代码:六边形数是指可以用六边形排列的点数,公式为H=n(2n−1),其中n是正整数。下面是用Go语言实现六边形数算法的完整源码:packagemainimport("fmt")//HexagonalNumber计算第n个六边形数funcHexagonalNumber(nint)int{
- 算法学习笔记之数学基础
threesevens
算法与数据结构算法
例1(最小公倍数与最大公约数)计算最小公倍数公式:LCM(A,B)=A*B/GCD(A,B)A与B的最小公倍数等于A*B除以A与B的最大公约数计算最大公约数:辗转相除法原理:设A与B的最大公约数为x,则A是x的倍数,B也是x的倍数,令A=ax,B=bx,A/B取整为c,则A-cB=(a-bc)x。即A与B的余数也是x的倍数 intgcd(inta,intb) { inttemp; whil
- 代码随想录算法营Day38 | 62. 不同路径,63. 不同路径 II,343. 整数拆分,96. 不同的二叉搜索树
寂枫zero
算法pythonleetcode
62.不同路径这题的限制是机器人在mxn的网格的左上角,每次只能向下走一格或者向右走一格。问到右下角有多少条不同路径。这个动态规划的初始状态是第一行和第一列的格子的值都是1,因为机器人只能向右走一格或者向下走一格,所以第一行和第一列的格子的不同路径数只能是1.而其他格子的路径数取决于每个格子的正上方和左边两个格子的路径数之和,即状态转移公式为dp[i][j]=dp[i-1][j]+dp[i][j-
- Linux--shell脚本之正则表达式
neo_will_mvp
正则表达式Shell项目实战代码shell正则表达式
一、正则表达式的概念及特点:正则表达式是对字符串操作的一种逻辑公式,就是用事先定义好的一些特定字符、及这些特定字符的组合,组成一个“规则字符串”,这个“规则字符串”用来表达对字符串的一种过滤逻辑。规定一些特殊语法表示字符类、数量限定符和位置关系,然后用这些特殊语法和普通字符一起表示一个模式,这就是正则表达式(RegularExpression)。给定一个正则表达式和另一个字符串,我们可以达到如下的
- 辅助工具之VBA(一)
tomlone
工具类
工欲善其事,必先利其器。excel可以理解成一个微型数据库,既能存储数据有能很好的呈现数据。拥有丰富的公式,强大的VBA,是我们日常最强大的工具之一。根据excel的特点,我们可以利用它自动生成代码。丰富的公式+VBA,我们可以做数据分析。文档结构形式是一切的基础。约定优于配置。我们要积累一些代码块,在我们需要的时候我们可以快速地组合起来完成想要的功能。1,单元格的遍历。根据选择的单元格来确定需要
- iOS http封装
374016526
ios服务器交互http网络请求
程序开发避免不了与服务器的交互,这里打包了一个自己写的http交互库。希望可以帮到大家。
内置一个basehttp,当我们创建自己的service可以继承实现。
KuroAppBaseHttp *baseHttp = [[KuroAppBaseHttp alloc] init];
[baseHttp setDelegate:self];
[baseHttp
- lolcat :一个在 Linux 终端中输出彩虹特效的命令行工具
brotherlamp
linuxlinux教程linux视频linux自学linux资料
那些相信 Linux 命令行是单调无聊且没有任何乐趣的人们,你们错了,这里有一些有关 Linux 的文章,它们展示着 Linux 是如何的有趣和“淘气” 。
在本文中,我将讨论一个名为“lolcat”的小工具 – 它可以在终端中生成彩虹般的颜色。
何为 lolcat ?
Lolcat 是一个针对 Linux,BSD 和 OSX 平台的工具,它类似于 cat 命令,并为 cat
- MongoDB索引管理(1)——[九]
eksliang
mongodbMongoDB管理索引
转载请出自出处:http://eksliang.iteye.com/blog/2178427 一、概述
数据库的索引与书籍的索引类似,有了索引就不需要翻转整本书。数据库的索引跟这个原理一样,首先在索引中找,在索引中找到条目以后,就可以直接跳转到目标文档的位置,从而使查询速度提高几个数据量级。
不使用索引的查询称
- Informatica参数及变量
18289753290
Informatica参数变量
下面是本人通俗的理解,如有不对之处,希望指正 info参数的设置:在info中用到的参数都在server的专门的配置文件中(最好以parma)结尾 下面的GLOBAl就是全局的,$开头的是系统级变量,$$开头的变量是自定义变量。如果是在session中或者mapping中用到的变量就是局部变量,那就把global换成对应的session或者mapping名字。
[GLOBAL] $Par
- python 解析unicode字符串为utf8编码字符串
酷的飞上天空
unicode
php返回的json字符串如果包含中文,则会被转换成\uxx格式的unicode编码字符串返回。
在浏览器中能正常识别这种编码,但是后台程序却不能识别,直接输出显示的是\uxx的字符,并未进行转码。
转换方式如下
>>> import json
>>> q = '{"text":"\u4
- Hibernate的总结
永夜-极光
Hibernate
1.hibernate的作用,简化对数据库的编码,使开发人员不必再与复杂的sql语句打交道
做项目大部分都需要用JAVA来链接数据库,比如你要做一个会员注册的 页面,那么 获取到用户填写的 基本信后,你要把这些基本信息存入数据库对应的表中,不用hibernate还有mybatis之类的框架,都不用的话就得用JDBC,也就是JAVA自己的,用这个东西你要写很多的代码,比如保存注册信
- SyntaxError: Non-UTF-8 code starting with '\xc4'
随便小屋
python
刚开始看一下Python语言,传说听强大的,但我感觉还是没Java强吧!
写Hello World的时候就遇到一个问题,在Eclipse中写的,代码如下
'''
Created on 2014年10月27日
@author: Logic
'''
print("Hello World!");
运行结果
SyntaxError: Non-UTF-8
- 学会敬酒礼仪 不做酒席菜鸟
aijuans
菜鸟
俗话说,酒是越喝越厚,但在酒桌上也有很多学问讲究,以下总结了一些酒桌上的你不得不注意的小细节。
细节一:领导相互喝完才轮到自己敬酒。敬酒一定要站起来,双手举杯。
细节二:可以多人敬一人,决不可一人敬多人,除非你是领导。
细节三:自己敬别人,如果不碰杯,自己喝多少可视乎情况而定,比如对方酒量,对方喝酒态度,切不可比对方喝得少,要知道是自己敬人。
细节四:自己敬别人,如果碰杯,一
- 《创新者的基因》读书笔记
aoyouzi
读书笔记《创新者的基因》
创新者的基因
创新者的“基因”,即最具创意的企业家具备的五种“发现技能”:联想,观察,实验,发问,建立人脉。
第一部分破坏性创新,从你开始
第一章破坏性创新者的基因
如何获得启示:
发现以下的因素起到了催化剂的作用:(1) -个挑战现状的问题;(2)对某项技术、某个公司或顾客的观察;(3) -次尝试新鲜事物的经验或实验;(4)与某人进行了一次交谈,为他点醒
- 表单验证技术
百合不是茶
JavaScriptDOM对象String对象事件
js最主要的功能就是验证表单,下面是我对表单验证的一些理解,贴出来与大家交流交流 ,数显我们要知道表单验证需要的技术点, String对象,事件,函数
一:String对象;通常是对字符串的操作;
1,String的属性;
字符串.length;表示该字符串的长度;
var str= "java"
- web.xml配置详解之context-param
bijian1013
javaservletweb.xmlcontext-param
一.格式定义:
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>contextConfigLocationValue></param-value>
</context-param>
作用:该元
- Web系统常见编码漏洞(开发工程师知晓)
Bill_chen
sqlPHPWebfckeditor脚本
1.头号大敌:SQL Injection
原因:程序中对用户输入检查不严格,用户可以提交一段数据库查询代码,根据程序返回的结果,
获得某些他想得知的数据,这就是所谓的SQL Injection,即SQL注入。
本质:
对于输入检查不充分,导致SQL语句将用户提交的非法数据当作语句的一部分来执行。
示例:
String query = "SELECT id FROM users
- 【MongoDB学习笔记六】MongoDB修改器
bit1129
mongodb
本文首先介绍下MongoDB的基本的增删改查操作,然后,详细介绍MongoDB提供的修改器,以完成各种各样的文档更新操作 MongoDB的主要操作
show dbs 显示当前用户能看到哪些数据库
use foobar 将数据库切换到foobar
show collections 显示当前数据库有哪些集合
db.people.update,update不带参数,可
- 提高职业素养,做好人生规划
白糖_
人生
培训讲师是成都著名的企业培训讲师,他在讲课中提出的一些观点很新颖,在此我收录了一些分享一下。注:讲师的观点不代表本人的观点,这些东西大家自己揣摩。
1、什么是职业规划:职业规划并不完全代表你到什么阶段要当什么官要拿多少钱,这些都只是梦想。职业规划是清楚的认识自己现在缺什么,这个阶段该学习什么,下个阶段缺什么,又应该怎么去规划学习,这样才算是规划。
- 国外的网站你都到哪边看?
bozch
技术网站国外
学习软件开发技术,如果没有什么英文基础,最好还是看国内的一些技术网站,例如:开源OSchina,csdn,iteye,51cto等等。
个人感觉如果英语基础能力不错的话,可以浏览国外的网站来进行软件技术基础的学习,例如java开发中常用的到的网站有apache.org 里面有apache的很多Projects,springframework.org是spring相关的项目网站,还有几个感觉不错的
- 编程之美-光影切割问题
bylijinnan
编程之美
package a;
public class DisorderCount {
/**《编程之美》“光影切割问题”
* 主要是两个问题:
* 1.数学公式(设定没有三条以上的直线交于同一点):
* 两条直线最多一个交点,将平面分成了4个区域;
* 三条直线最多三个交点,将平面分成了7个区域;
* 可以推出:N条直线 M个交点,区域数为N+M+1。
- 关于Web跨站执行脚本概念
chenbowen00
Web安全跨站执行脚本
跨站脚本攻击(XSS)是web应用程序中最危险和最常见的安全漏洞之一。安全研究人员发现这个漏洞在最受欢迎的网站,包括谷歌、Facebook、亚马逊、PayPal,和许多其他网站。如果你看看bug赏金计划,大多数报告的问题属于 XSS。为了防止跨站脚本攻击,浏览器也有自己的过滤器,但安全研究人员总是想方设法绕过这些过滤器。这个漏洞是通常用于执行cookie窃取、恶意软件传播,会话劫持,恶意重定向。在
- [开源项目与投资]投资开源项目之前需要统计该项目已有的用户数
comsci
开源项目
现在国内和国外,特别是美国那边,突然出现很多开源项目,但是这些项目的用户有多少,有多少忠诚的粉丝,对于投资者来讲,完全是一个未知数,那么要投资开源项目,我们投资者必须准确无误的知道该项目的全部情况,包括项目发起人的情况,项目的维持时间..项目的技术水平,项目的参与者的势力,项目投入产出的效益.....
- oracle alert log file(告警日志文件)
daizj
oracle告警日志文件alert log file
The alert log is a chronological log of messages and errors, and includes the following items:
All internal errors (ORA-00600), block corruption errors (ORA-01578), and deadlock errors (ORA-00060)
- 关于 CAS SSO 文章声明
denger
SSO
由于几年前写了几篇 CAS 系列的文章,之后陆续有人参照文章去实现,可都遇到了各种问题,同时经常或多或少的收到不少人的求助。现在这时特此说明几点:
1. 那些文章发表于好几年前了,CAS 已经更新几个很多版本了,由于近年已经没有做该领域方面的事情,所有文章也没有持续更新。
2. 文章只是提供思路,尽管 CAS 版本已经发生变化,但原理和流程仍然一致。最重要的是明白原理,然后
- 初二上学期难记单词
dcj3sjt126com
englishword
lesson 课
traffic 交通
matter 要紧;事物
happy 快乐的,幸福的
second 第二的
idea 主意;想法;意见
mean 意味着
important 重要的,重大的
never 从来,决不
afraid 害怕 的
fifth 第五的
hometown 故乡,家乡
discuss 讨论;议论
east 东方的
agree 同意;赞成
bo
- uicollectionview 纯代码布局, 添加头部视图
dcj3sjt126com
Collection
#import <UIKit/UIKit.h>
@interface myHeadView : UICollectionReusableView
{
UILabel *TitleLable;
}
-(void)setTextTitle;
@end
#import "myHeadView.h"
@implementation m
- N 位随机数字串的 JAVA 生成实现
FX夜归人
javaMath随机数Random
/**
* 功能描述 随机数工具类<br />
* @author FengXueYeGuiRen
* 创建时间 2014-7-25<br />
*/
public class RandomUtil {
// 随机数生成器
private static java.util.Random random = new java.util.R
- Ehcache(09)——缓存Web页面
234390216
ehcache页面缓存
页面缓存
目录
1 SimplePageCachingFilter
1.1 calculateKey
1.2 可配置的初始化参数
1.2.1 cach
- spring中少用的注解@primary解析
jackyrong
primary
这次看下spring中少见的注解@primary注解,例子
@Component
public class MetalSinger implements Singer{
@Override
public String sing(String lyrics) {
return "I am singing with DIO voice
- Java几款性能分析工具的对比
lbwahoo
java
Java几款性能分析工具的对比
摘自:http://my.oschina.net/liux/blog/51800
在给客户的应用程序维护的过程中,我注意到在高负载下的一些性能问题。理论上,增加对应用程序的负载会使性能等比率的下降。然而,我认为性能下降的比率远远高于负载的增加。我也发现,性能可以通过改变应用程序的逻辑来提升,甚至达到极限。为了更详细的了解这一点,我们需要做一些性能
- JVM参数配置大全
nickys
jvm应用服务器
JVM参数配置大全
/usr/local/jdk/bin/java -Dresin.home=/usr/local/resin -server -Xms1800M -Xmx1800M -Xmn300M -Xss512K -XX:PermSize=300M -XX:MaxPermSize=300M -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=5 -
- 搭建 CentOS 6 服务器(14) - squid、Varnish
rensanning
varnish
(一)squid
安装
# yum install httpd-tools -y
# htpasswd -c -b /etc/squid/passwords squiduser 123456
# yum install squid -y
设置
# cp /etc/squid/squid.conf /etc/squid/squid.conf.bak
# vi /etc/
- Spring缓存注解@Cache使用
tom_seed
spring
参考资料
http://www.ibm.com/developerworks/cn/opensource/os-cn-spring-cache/
http://swiftlet.net/archives/774
缓存注解有以下三个:
@Cacheable @CacheEvict @CachePut
- dom4j解析XML时出现"java.lang.noclassdeffounderror: org/jaxen/jaxenexception"错误
xp9802
java.lang.NoClassDefFoundError: org/jaxen/JaxenExc
关键字: java.lang.noclassdeffounderror: org/jaxen/jaxenexception
使用dom4j解析XML时,要快速获取某个节点的数据,使用XPath是个不错的方法,dom4j的快速手册里也建议使用这种方式
执行时却抛出以下异常:
Exceptio