- 蔡高厅老师 - 高等数学-阅读笔记 - 01 - 前言、函数【视频第01、02、03、】
Franklin
数学线性代数
高等数学前言;196学时,每周6课主要内容:上册一元、多元函数数,微分学、积分学、矢量代数、空间解析几何无穷级数、微分方程,多元函数微分学和积分学目的:高等数学3基:1高等数学的基本知识2高度数学的基本理论3高等数学的基本计算方法提高数学素养培养:抽象思维、逻辑推理、辩证的思想方法、空间想象能力、分析问题、解决问题的能力为进一步学习打下必要的学习基础和初等数学不同,研究的不是常量而是变量,变量和变
- 认识Jacobian
一碗姜汤
统计学习线性代数矩阵
Jacobian(雅可比矩阵)是数学中用于描述多元函数在某一点处导数的重要概念,广泛应用于微积分、微分几何、数值分析等领域。以下从定义、数学表达、几何意义、应用场景等方面详细解析:一、定义与数学表达1.基本定义若有一个从欧式空间Rn\mathbb{R}^nRn到Rm\mathbb{R}^mRm的多元函数:f:Rn→Rmf:\mathbb{R}^n\to\mathbb{R}^mf:Rn→Rm,其分量
- 代数几何:自然曲线的数学研究
AI天才研究院
ChatGPT计算AI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
代数几何:自然曲线的数学研究关键词:代数几何、自然曲线、数学研究、算法、应用摘要:本文深入探讨了代数几何在自然曲线研究中的应用,从基础概念到复杂算法,再到实际项目实战,全面揭示了代数几何在数学研究中的核心地位和深远影响。本文旨在为读者提供一份系统、完整、易于理解的技术指南,帮助深入理解自然曲线的数学本质及其在计算机科学中的广泛应用。目录大纲设计思路为了设计出《代数几何:自然曲线的数学研究》这本书的
- 数学:线性相关和线性无关的关系
千码君2016
数学线性代数系数唯一性定义法矩阵秩法行列式法高维空间的基线性方程组
在线性代数中,线性无关是描述向量组性质的重要概念,它反映了向量组中向量之间是否存在“冗余”或“依赖”关系。以下从定义、判断方法、几何意义及应用等方面详细说明:一、线性无关的定义才成立,则称该向量组线性无关。反之,若存在不全为0的系数使等式成立,则称向量组线性相关。二、核心理解:线性无关的本质三、线性无关的判断方法1.定义法(直接验证)2.矩阵秩法
- 使用随机森林实现目标检测
司南锤
python基础学习AI随机森林
核心实现思路滑动窗口策略:在图像上滑动固定大小的窗口,对每个窗口进行分类多维特征提取:结合统计特征、纹理特征、边缘特征、形状特征等随机森林分类:训练二分类器判断窗口是否包含目标后处理优化:使用非极大值抑制减少重复检测特征工程的重要性LBP纹理特征:捕捉局部纹理模式灰度共生矩阵:描述纹理的统计特性边缘密度:反映目标边界信息形状描述符:圆形度、面积比等几何特征实际应用建议数据收集:收集大量正负样本进行
- 【unitrix】 4.5 库文件介绍(readme.md)
liuyuan77
我的unitrix库rust
unitrix·单位算阵Unitrix:Normalizedphysicalunitmanagementand2Dgeometrycomputingthroughconstifiedmatrices.Deliverszero-costabstractionswithno_stdsupport.单位算阵:通过常量化矩阵实现物理量单位化与2D几何计算规范化。提供零成本抽象,支持no_std环境。Key
- 【QT】QPointF、QRectF、QPolygonF 介绍
我不是程序猿儿
QT之路qt开发语言
QPointF确实存在于Qt框架中,它是一个类,用于表示二维空间中的一个点,其中包含了浮点精度的x和y坐标。主要特点和用途高精度坐标:QPointF使用double类型来存储x和y坐标,这提供了比QPoint(后者存储整数坐标)更高的精度。这在需要精确定位或处理图形和界面元素时特别有用,例如在绘图、图像处理或任何需要几何计算的应用中。数学运算支持:QPointF提供了一系列便利的数学运算,如加法、
- 几何算法与CAD技术:从基础到国产化突破
Lee同学
人工智能几何学算法c++数学建模
在工业设计、建筑建模和智能制造领域,计算机辅助设计(CAD)是连接创意与现实的桥梁。从一枚螺丝钉到一架飞机,CAD技术支撑着现代工业的每一个细节。然而,在光鲜的应用背后,几何算法才是CAD的“心脏”——它不仅定义了如何精确建模,更决定了设计效率与创新边界。本文将深入探讨CAD背后的几何算法核心,并揭秘国内技术如何突破“卡脖子”困境。一、几何建模:数字世界的“雕刻刀”1.边界表示法(B-Rep):高
- OCCT 入门(1)OCCT 简介
一个不务正业的程序猿
OCCT入门c++
文章目录一、OCCT简介1、什么是OCCT(OpenCASCADETechnology)?2、重要特点3、典型应用场景一、OCCT简介1、什么是OCCT(OpenCASCADETechnology)?OCCT是一个开源跨平台的三维几何建模内核,广泛应用于CAD/CAM/CAE、工业仿真、3D打印等领域(如FreeCAD、KiCAD等软件的核心引擎)。提供下面这些基本功能几何建模基础实体(立方体、圆
- 第五节 渲染机制与性能-回流与重绘优化
泽泽爱旅行
css前端javascripthtml
以下是关于回流(Reflow)与重绘(Repaint)优化的全面解析,结合核心原理、触发条件、性能影响及优化策略,帮助开发者深入理解并高效解决渲染性能问题。一、回流与重绘的核心概念回流(Reflow)定义:当元素的几何属性(如尺寸、位置、布局)发生变化时,浏览器需要重新计算渲染树(RenderTree)并更新页面布局,这一过程称为回流。触发条件:修改元素的width、height、margin、p
- PythonOCC中GeomAPI_PointsToBSplineSurface插值方法使用指南
尤颖贝Dora
PythonOCC中GeomAPI_PointsToBSplineSurface插值方法使用指南pythonocc-coretpaviot/pythonocc-core:是一个基于Python的OpenCASCADE(OCCT)几何内核库,提供了三维几何形状的创建、分析和渲染等功能。适合对3D建模、CAD、CAE以及Python有兴趣的开发者。项目地址:https://gitcode.com/gh
- 数学中的代数数论与代数几何
AI天才研究院
计算AI大模型应用入门实战与进阶大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA计算AI大模型应用
1.背景介绍在数学的众多分支中,代数数论和代数几何是两个极其重要的领域。代数数论,顾名思义,是研究数论问题的代数方法,主要研究整数、有理数、代数数等的性质。而代数几何则是研究零点集的代数方法,主要研究多项式方程和代数方程组的解的几何性质。这两个领域虽然看似独立,但实际上有着深厚的内在联系,它们的交叉研究已经产生了许多深远的理论和应用。2.核心概念与联系2.1代数数论代数数论的核心概念是代数数,即满
- 数智管理学(二十五)
虚谷23
数智管理学人工智能网络大数据企业数智化创业创新
三、动态资源优化的实现技术动态资源配置的实现离不开先进的技术支撑,以下几项技术是其关键要素:(一)数字孪生技术:虚拟映射真实资源1.虚拟模型构建与实时同步数字孪生技术通过传感器采集物理资源的各种数据,如设备的几何形状、物理特性、运行状态等,利用计算机图形学、建模技术和仿真技术,构建出与物理资源高度相似的虚拟模型。在智能工厂中,对于每一台生产设备,都可以建立对应的数字孪生模型,该模型不仅包括设备的外
- 清风数学建模个人笔记--模糊综合评价
fvdj0
数学建模笔记
目录一、量二、分类三、模糊函数的三种表示方法四、应用:模糊综合评价(评判)一、量①确定性:经典数学(几何、代数)②不确定性:随机性(概率论、随机过程)灰性(灰色系统)模糊性(模糊数学)二、分类:偏小型:年轻、小、冷中间型:中年、中、暖偏大型:年老、大、热三、模糊函数的三种表示方法(1)模糊统计法(设计调查问卷,不推荐,主观性最弱)(2)借助已有的尺度(需要已有的指标,并能收集到数据)论域模糊集隶属
- 腾讯混元3D实现内容生产的“平民化”
速易达网络
数字媒体专业课程3d
腾讯混元3D生成大模型是当前AI驱动3D内容生产的代表性技术,通过几何与纹理解耦、工业级开源、多模态输入等创新,将传统建模流程从“天级”压缩至“秒级”,彻底重构了游戏、影视、工业设计等领域的创作逻辑。以下从技术突破、应用落地及未来趋势三方面深度解析其核心价值:一、技术架构:几何与纹理解耦的工业级突破双模型协作生成框架几何大模型:专注物体结构与空间关系,生成拓扑合理的低多边形白模(面数可精准控制至数
- opencv学习——霍夫变换原理
zqnnn
opencv
最近的项目用到了霍夫变换,感觉自己只是会调用函数,并不清楚原理,所以写这篇记录一下霍夫变换中心思想是通过坐标变换来检测直线,后来经过改进,就可以检测椭圆等将特定图形上的点变换到一组参数空间上,根据参数空间点累计的结果找到一个极大值对应的解,那么这个解就对应着要寻找的几何形状的参数(比如说直线,那么就会得到直线的斜率k与截距b,圆就会得到圆心与半径等等)。原始空间到参数空间的变换假设有一条直线L,原
- Three.js 加载器简介
lpfasd123
Threejs学习笔记jsThreejs
1.Three.js加载器简介Three.js提供了多种加载器,用于加载不同格式的3D模型、纹理和其他资源。在本文中使用的是和:GLTFLoaderDRACOLoaderGLTFLoader:用于加载GLTF/GLB格式的3D模型。GLTF是一种轻量级的3D文件格式,支持几何体、材质、动画、场景等数据。返回的对象包含模型的场景(gltf.scene)、动画(gltf.animations)等信息。
- 数学:什么是余弦定理?
千码君2016
数学几何原本几何构造法向量点积法坐标系解析法反推角的大小合力大小文本向量相似性度量
余弦定理是欧氏平面几何学基本定理,它是勾股定理的推广,描述了任意三角形中三条边和一个角的余弦之间的关系。具体内容如下:历史渊源:对余弦定理的研究可追溯到公元前3世纪欧几里得的《几何原本》,但最初它只是以几何定理的身份出现。直到16世纪,法国数学家韦达首次写出了三角形式的余弦定理。17-18世纪,对余弦定理的应用不多,直到19-20世纪,余弦定理才得到广泛应用。应用场景:在解三角形问题中,若已知三边
- 数学:什么是平行四边形法则?
千码君2016
数学合向量共起点对角线向量加法余弦定理力的合成与分解向量代数
平行四边形法则是物理学和数学中用于合成向量的基本法则,主要用于描述如何将两个向量合成为一个合向量,其原理可通过几何图形直观表示。以下是关于该法则的详细介绍:一、定义与几何表达1.基本定义当两个向量以共起点的方式存在时(即它们的起点相同),可以以这两个向量为邻边作一个平行四边形,那么这两个向量所夹的对角线(从共同起点出发的对角线)就表示这两个向量的合向量。2.几何作图步骤设向量OA→\overrig
- 大模型强化微调GRPO——DeepSeekMath: Pushing the Limits of MathematicalReasoning in Open Language Models
樱花的浪漫
对抗生成网络与动作识别强化学习大模型与智能体因果推断语言模型人工智能自然语言处理深度学习机器学习
1.概述大型语言模型(LLM)革新了人工智能领域的数学推理方法,在定量推理基准测试(Hendrycks等,2021年)和几何推理基准测试(Trinh等,2024年)方面取得了重大进展。此外,这些模型在帮助人类解决复杂的数学问题方面也发挥了重要作用(Yao,2023年)。然而,像GPT-4(OpenAI,2023年)和Gemini-Ultra(Anil等,2023年)这样的尖端模型并未公开,目前可获
- AntV F2入门教程
德育处主任Pro
arcgis
以下教程将系统地介绍AntV F2(移动端可视化引擎)的核心组件API,包含安装与引入、画布与图表、数据映射、几何标记、坐标轴、图例、提示、标注和滚动条等,每个API都附带完整示例代码,帮助你快速掌握F2用法。一、安装与引入#安装F2主包npminstall@antv/f2--save#或者使用yarnyarnadd@antv/f2//在小程序或浏览器中引入import{Canvas,Chart,
- 数学符号和标识中英文列表(含义与示例)
纸上笔下
MatheMatiCs算法数学符号英文中文微积分导数
数学符号和标识的参考,涵盖了数学的各个主要分支,并提供清晰的定义和示例,方便快速查找和学习收藏。目录基础数学符号几何符号代数符号线性代数符号概率与统计符号集合论符号逻辑符号微积分与分析符号数字与字母符号特点中英对照:提供符号的英文术语,方便国际交流和文献阅读。应用示例:提供典型数学表达式,例如导数计算(ddx(x2)=2x\frac{d}{dx}(x^2)=2xdxd(x2)=2x)。1.基础数学
- 计算机视觉数据增强技巧:Albumentations库实战指南
xcLeigh
计算机视觉CV计算机视觉人工智能AI数据增强Albumentations
计算机视觉数据增强技巧:Albumentations库实战指南一、前言二、Albumentations库概述2.1Albumentations库的核心优势2.2安装与导入三、Albumentations库基础操作3.1几何变换3.1.1翻转操作3.1.2旋转操作3.2颜色变换3.2.1亮度、对比度和饱和度调整3.2.2随机噪声添加四、Albumentations库高级操作4.1复合变换与概率控制4
- C#Halcon从零开发_Day10_直线拟合
仙贝大饼
C#联合Halcon从零编程算法Halconc#机器视觉直线拟合
一、引言直线拟合应用场景:产品边缘检测:检测产品的直线边缘(如金属板、塑料件的边缘),判断是否符合设计规格。缺陷检测:通过拟合直线检测边缘的直线度,识别是否存在弯曲、断裂或毛刺等缺陷。长度、宽度测量:通过拟合直线计算物体的长度、宽度等几何尺寸。二、具体实施:dev_get_window(WindowHandle)read_image(Image2,'C:/Users/10314/Desktop/r
- D函数.py
是紫焅呢
python开发语言青少年编程visualstudiocode学习方法
前言:函数是编程中的基础概念,它们允许我们封装一段代码,以便在需要时反复调用。通过使用函数,我们不仅可以提高代码的可读性和可维护性,还可以减少重复代码的出现。目录一、函数到底是个啥玩意儿?二、为啥要用函数?三、写第一个函数试试水四、几何计算:从圆面积开始圆面积计算矩形面积计算三角形面积计算五、数学问题:挑战一下自己斐波那契数列阶乘计算素数检查六、列表操作:算算平均值七、看看这些函数到底行不行八、别
- TopNet:基于Transformer的高效点云几何压缩网络模型详解
清风AI
深度学习算法详解及代码复现计算机视觉算法深度学习人工智能计算机视觉神经网络transformer卷积神经网络python
一、研究背景与挑战随着激光雷达(LiDAR)技术的普及,点云数据在自动驾驶、三维重建等领域得到广泛应用。然而,点云数据的无序性、稀疏性给存储和传输带来巨大挑战。传统的点云几何压缩(PCGC)方法难以平衡压缩率与精度,而深度学习方法逐渐成为主流。现有方法主要分为两类:CNN-based方法:通过3D卷积提取局部特征,但受限于固定感受野,难以捕捉长距离依赖。Transformer-based方法:利用
- Matlab | matlab中的图像处理详解
北斗猿
程序语言设计(C语言C++MatlabPython等)matlab算法图像处理
MATLAB图像处理详解这里写目录标题图像处理MATLAB图像处理详解一、图像基础操作1.图像读写与显示2.图像信息获取3.图像类型转换二、图像增强技术1.对比度调整2.去噪处理3.锐化处理三、图像变换1.几何变换2.频域变换四、图像分割1.阈值分割2.边缘检测3.区域分割五、形态学操作1.基本操作2.高级形态学六、特征提取与分析1.区域属性2.纹理特征七、彩色图像处理1.色彩空间转换2.彩色分割
- 【世纪龙科技】几何G6新能源汽车结构原理 教学软件
Century_Dragon
新能源汽车结构原理几何G6汽车仿真教学软件汽车软件构建vrmr
一、产品定位本软件专注于新能源汽车结构原理教学,秉持理虚实一体化教学理念,旨在为师生打造一个边教、边学、边做的高效教学环境,全方位丰富课堂教学环节。二、产品功能多维度展示功能:软件以吉利几何G6新能源轿车为原型,集组成结构展示、结构爆炸、系统工作原理、零部件功用介绍、零件独显、视频、动画播放等多种功能于一体,全面覆盖吉利新能源汽车的十几个关键系统,包括电驱系统、电控系统、电驱冷却系统、动力电池系统
- 【世纪龙科技】新能源汽车故障诊断与排除 仿真教学软件(几何G6)
Century_Dragon
几何G6汽车仿真教学软件新能源汽车汽车软件需求
一、产品定位与优势本软件严格遵循《职业教育示范性虚拟仿真实训基地建设指南》,以吉利几何G6为开发原型,并由院校专家全程指导。专为新能源实训课程教学、学生实训、模拟考核以及赛前遴选参赛选手设计,采用理虚实一体化教学模式,助力师生边教、边学、边做,全面丰富课堂教学与实践教学环节。二、功能模块与特色(一)多样化的故障实训形式涵盖单一故障及综合故障等多种诊断模式,包含100多个故障点,覆盖新能源汽车常见的
- 3D制作与数字媒体领域的技术突破
速易达网络
数字媒体专业课程3d媒体
腾讯混元3D制作与数字媒体领域的技术突破、应用实践及未来趋势的专业综述,结合最新研究成果与产业落地案例,分为三部分呈现:一、技术突破:3D生成与重建的核心创新1.单图生成可拆分3D角色(StdGEN)技术原理:通过语义感知大规模重建模型(S-LRM),将单张角色立绘转化为多视角标准图像,再解耦生成几何、颜色、语义信息,支持分层提取身体、服装、头发等组件。性能优势:3分钟内生成精细3D模型(粗粒度仅
- 多线程编程之join()方法
周凡杨
javaJOIN多线程编程线程
现实生活中,有些工作是需要团队中成员依次完成的,这就涉及到了一个顺序问题。现在有T1、T2、T3三个工人,如何保证T2在T1执行完后执行,T3在T2执行完后执行?问题分析:首先问题中有三个实体,T1、T2、T3, 因为是多线程编程,所以都要设计成线程类。关键是怎么保证线程能依次执行完呢?
Java实现过程如下:
public class T1 implements Runnabl
- java中switch的使用
bingyingao
javaenumbreakcontinue
java中的switch仅支持case条件仅支持int、enum两种类型。
用enum的时候,不能直接写下列形式。
switch (timeType) {
case ProdtransTimeTypeEnum.DAILY:
break;
default:
br
- hive having count 不能去重
daizj
hive去重having count计数
hive在使用having count()是,不支持去重计数
hive (default)> select imei from t_test_phonenum where ds=20150701 group by imei having count(distinct phone_num)>1 limit 10;
FAILED: SemanticExcep
- WebSphere对JSP的缓存
周凡杨
WAS JSP 缓存
对于线网上的工程,更新JSP到WebSphere后,有时会出现修改的jsp没有起作用,特别是改变了某jsp的样式后,在页面中没看到效果,这主要就是由于websphere中缓存的缘故,这就要清除WebSphere中jsp缓存。要清除WebSphere中JSP的缓存,就要找到WAS安装后的根目录。
现服务
- 设计模式总结
朱辉辉33
java设计模式
1.工厂模式
1.1 工厂方法模式 (由一个工厂类管理构造方法)
1.1.1普通工厂模式(一个工厂类中只有一个方法)
1.1.2多工厂模式(一个工厂类中有多个方法)
1.1.3静态工厂模式(将工厂类中的方法变成静态方法)
&n
- 实例:供应商管理报表需求调研报告
老A不折腾
finereport报表系统报表软件信息化选型
引言
随着企业集团的生产规模扩张,为支撑全球供应链管理,对于供应商的管理和采购过程的监控已经不局限于简单的交付以及价格的管理,目前采购及供应商管理各个环节的操作分别在不同的系统下进行,而各个数据源都独立存在,无法提供统一的数据支持;因此,为了实现对于数据分析以提供采购决策,建立报表体系成为必须。 业务目标
1、通过报表为采购决策提供数据分析与支撑
2、对供应商进行综合评估以及管理,合理管理和
- mysql
林鹤霄
转载源:http://blog.sina.com.cn/s/blog_4f925fc30100rx5l.html
mysql -uroot -p
ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)
[root@centos var]# service mysql
- Linux下多线程堆栈查看工具(pstree、ps、pstack)
aigo
linux
原文:http://blog.csdn.net/yfkiss/article/details/6729364
1. pstree
pstree以树结构显示进程$ pstree -p work | grep adsshd(22669)---bash(22670)---ad_preprocess(4551)-+-{ad_preprocess}(4552) &n
- html input与textarea 值改变事件
alxw4616
JavaScript
// 文本输入框(input) 文本域(textarea)值改变事件
// onpropertychange(IE) oninput(w3c)
$('input,textarea').on('propertychange input', function(event) {
console.log($(this).val())
});
- String类的基本用法
百合不是茶
String
字符串的用法;
// 根据字节数组创建字符串
byte[] by = { 'a', 'b', 'c', 'd' };
String newByteString = new String(by);
1,length() 获取字符串的长度
&nbs
- JDK1.5 Semaphore实例
bijian1013
javathreadjava多线程Semaphore
Semaphore类
一个计数信号量。从概念上讲,信号量维护了一个许可集合。如有必要,在许可可用前会阻塞每一个 acquire(),然后再获取该许可。每个 release() 添加一个许可,从而可能释放一个正在阻塞的获取者。但是,不使用实际的许可对象,Semaphore 只对可用许可的号码进行计数,并采取相应的行动。
S
- 使用GZip来压缩传输量
bijian1013
javaGZip
启动GZip压缩要用到一个开源的Filter:PJL Compressing Filter。这个Filter自1.5.0开始该工程开始构建于JDK5.0,因此在JDK1.4环境下只能使用1.4.6。
PJL Compressi
- 【Java范型三】Java范型详解之范型类型通配符
bit1129
java
定义如下一个简单的范型类,
package com.tom.lang.generics;
public class Generics<T> {
private T value;
public Generics(T value) {
this.value = value;
}
}
- 【Hadoop十二】HDFS常用命令
bit1129
hadoop
1. 修改日志文件查看器
hdfs oev -i edits_0000000000000000081-0000000000000000089 -o edits.xml
cat edits.xml
修改日志文件转储为xml格式的edits.xml文件,其中每条RECORD就是一个操作事务日志
2. fsimage查看HDFS中的块信息等
&nb
- 怎样区别nginx中rewrite时break和last
ronin47
在使用nginx配置rewrite中经常会遇到有的地方用last并不能工作,换成break就可以,其中的原理是对于根目录的理解有所区别,按我的测试结果大致是这样的。
location /
{
proxy_pass http://test;
- java-21.中兴面试题 输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 , 使其和等于 m
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
public class CombinationToSum {
/*
第21 题
2010 年中兴面试题
编程求解:
输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 ,
使其和等
- eclipse svn 帐号密码修改问题
开窍的石头
eclipseSVNsvn帐号密码修改
问题描述:
Eclipse的SVN插件Subclipse做得很好,在svn操作方面提供了很强大丰富的功能。但到目前为止,该插件对svn用户的概念极为淡薄,不但不能方便地切换用户,而且一旦用户的帐号、密码保存之后,就无法再变更了。
解决思路:
删除subclipse记录的帐号、密码信息,重新输入
- [电子商务]传统商务活动与互联网的结合
comsci
电子商务
某一个传统名牌产品,过去销售的地点就在某些特定的地区和阶层,现在进入互联网之后,用户的数量群突然扩大了无数倍,但是,这种产品潜在的劣势也被放大了无数倍,这种销售利润与经营风险同步放大的效应,在最近几年将会频繁出现。。。。
如何避免销售量和利润率增加的
- java 解析 properties-使用 Properties-可以指定配置文件路径
cuityang
javaproperties
#mq
xdr.mq.url=tcp://192.168.100.15:61618;
import java.io.IOException;
import java.util.Properties;
public class Test {
String conf = "log4j.properties";
private static final
- Java核心问题集锦
darrenzhu
java基础核心难点
注意,这里的参考文章基本来自Effective Java和jdk源码
1)ConcurrentModificationException
当你用for each遍历一个list时,如果你在循环主体代码中修改list中的元素,将会得到这个Exception,解决的办法是:
1)用listIterator, 它支持在遍历的过程中修改元素,
2)不用listIterator, new一个
- 1分钟学会Markdown语法
dcj3sjt126com
markdown
markdown 简明语法 基本符号
*,-,+ 3个符号效果都一样,这3个符号被称为 Markdown符号
空白行表示另起一个段落
`是表示inline代码,tab是用来标记 代码段,分别对应html的code,pre标签
换行
单一段落( <p>) 用一个空白行
连续两个空格 会变成一个 <br>
连续3个符号,然后是空行
- Gson使用二(GsonBuilder)
eksliang
jsongsonGsonBuilder
转载请出自出处:http://eksliang.iteye.com/blog/2175473 一.概述
GsonBuilder用来定制java跟json之间的转换格式
二.基本使用
实体测试类:
温馨提示:默认情况下@Expose注解是不起作用的,除非你用GsonBuilder创建Gson的时候调用了GsonBuilder.excludeField
- 报ClassNotFoundException: Didn't find class "...Activity" on path: DexPathList
gundumw100
android
有一个工程,本来运行是正常的,我想把它移植到另一台PC上,结果报:
java.lang.RuntimeException: Unable to instantiate activity ComponentInfo{com.mobovip.bgr/com.mobovip.bgr.MainActivity}: java.lang.ClassNotFoundException: Didn't f
- JavaWeb之JSP指令
ihuning
javaweb
要点
JSP指令简介
page指令
include指令
JSP指令简介
JSP指令(directive)是为JSP引擎而设计的,它们并不直接产生任何可见输出,而只是告诉引擎如何处理JSP页面中的其余部分。
JSP指令的基本语法格式:
<%@ 指令 属性名="
- mac上编译FFmpeg跑ios
啸笑天
ffmpeg
1、下载文件:https://github.com/libav/gas-preprocessor, 复制gas-preprocessor.pl到/usr/local/bin/下, 修改文件权限:chmod 777 /usr/local/bin/gas-preprocessor.pl
2、安装yasm-1.2.0
curl http://www.tortall.net/projects/yasm
- sql mysql oracle中字符串连接
macroli
oraclesqlmysqlSQL Server
有的时候,我们有需要将由不同栏位获得的资料串连在一起。每一种资料库都有提供方法来达到这个目的:
MySQL: CONCAT()
Oracle: CONCAT(), ||
SQL Server: +
CONCAT() 的语法如下:
Mysql 中 CONCAT(字串1, 字串2, 字串3, ...): 将字串1、字串2、字串3,等字串连在一起。
请注意,Oracle的CON
- Git fatal: unab SSL certificate problem: unable to get local issuer ce rtificate
qiaolevip
学习永无止境每天进步一点点git纵观千象
// 报错如下:
$ git pull origin master
fatal: unable to access 'https://git.xxx.com/': SSL certificate problem: unable to get local issuer ce
rtificate
// 原因:
由于git最新版默认使用ssl安全验证,但是我们是使用的git未设
- windows命令行设置wifi
surfingll
windowswifi笔记本wifi
还没有讨厌无线wifi的无尽广告么,还在耐心等待它慢慢启动么
教你命令行设置 笔记本电脑wifi:
1、开启wifi命令
netsh wlan set hostednetwork mode=allow ssid=surf8 key=bb123456
netsh wlan start hostednetwork
pause
其中pause是等待输入,可以去掉
2、
- Linux(Ubuntu)下安装sysv-rc-conf
wmlJava
linuxubuntusysv-rc-conf
安装:sudo apt-get install sysv-rc-conf 使用:sudo sysv-rc-conf
操作界面十分简洁,你可以用鼠标点击,也可以用键盘方向键定位,用空格键选择,用Ctrl+N翻下一页,用Ctrl+P翻上一页,用Q退出。
背景知识
sysv-rc-conf是一个强大的服务管理程序,群众的意见是sysv-rc-conf比chkconf
- svn切换环境,重发布应用多了javaee标签前缀
zengshaotao
javaee
更换了开发环境,从杭州,改变到了上海。svn的地址肯定要切换的,切换之前需要将原svn自带的.svn文件信息删除,可手动删除,也可通过废弃原来的svn位置提示删除.svn时删除。
然后就是按照最新的svn地址和规范建立相关的目录信息,再将原来的纯代码信息上传到新的环境。然后再重新检出,这样每次修改后就可以看到哪些文件被修改过,这对于增量发布的规范特别有用。
检出