mongo执行逻辑表达式_MongoDB 常用查询操作

MongoDB 查询操作可实现大部分关系型数据库的常用查询操作,本文对 MongoDB 常用查询进行讲解。

在进行操作讲解前,先展示当前 MongoDB 中已存在的文档,集合名称article

条件大小比较操作

查询文档时,对条件的大小、范围进行过滤查询,以下是常用比较操作符

操作符

说明

$eq

查询与条件值相等的文档,类似关系型数据库的 =

$ne

查询与条件值不相等或不存在的文档,类似关系型数据库的 !=

$gt

查询大于条件值的文档,类似关系型数据库的 >

$gte

查询大于或等于条件值的文档,类似关系型数据库的 >=

$lt

查询小于条件值的文档,类似关系型数据库的 <

$lte

查询小于或等于条件值的文档,类似关系型数据库的 <=

$in

查询 $in 数据里值的文档,类似关系型数据库的 in

$nin

与 $in 查询相反,类似关系型数据库的 not in

由于使用大于、小于、等于关系都差不多,比较好理解,这里就举一个例子说明,使用$gte来获取大于或等于150的 visitor

db.article.find({"visitor": {$gte:150}})

执行结果:

使用$in时,必须用数组来设置条件值,比如获取 visitor 为70和150的值

db.article.find({"visitor": {$in:[70, 150]}})

执行结果:

逻辑操作符

多条件查询中,条件与条件连接符号叫做逻辑操作符。常用操作符:

操作符

说明

$and

表示所有条件同时满足时成立

$nor

与$and相反,所有条件都不满足时成立

$or

只要有一个条件满足则成立

$not

表示字段存在并且不符合条件

$and 查询author=ytao且visitor=150的文档

db.article.find(

{$and:[

{"author":{$eq:"ytao"}},

{"visitor":{$eq:150}}

]}

)

$nor查询不是author=ytao和不是visitor=170的文档

db.article.find(

{$nor:[

{"author":{$eq:"ytao"}},

{"visitor":{$eq:170}}

]}

)

$or查询author=ytao或visitor=170的文档

db.article.find(

{$or:[

{"author":{$eq:"ytao"}},

{"visitor":{$eq:170}}

]}

)

$not查询不是author=ytao的文档

db.article.find(

{"author":{$not:{$eq:"ytao"}}}

)

元素操作符

对字段元素上的操作符叫做元素操作符

操作符

说明

$exists

判断文档中字段是否存在,true为存在,false为不存在

$type

筛选指定字段类型的文档

$exists查询author字段存在的文档

db.article.find(

{"author":{$exists:true}}

)

$type查询author字段为数组的文档

db.article.find(

{"author":{$type:"array"}}

)

正则表达式

MongoDB 支持正则表达式匹配文档,通过正则表达我们可以实现关系型数据库的模糊查询,以及更加强大匹配规则,其使用语法有三种:

{ : { $regex: /pattern/, $ options : '' } }

{ : { $regex: 'pattern', $ options : '' } }

{ : { $regex: /pattern/ } }

参数/pattern/和'pattern'都是表示正则表达式,直接添加字符串可用来模糊查询。参数$options为可选参数,有四个固定值选择

options 选项

说明

i

匹配过程忽略大小写

x

匹配过程忽略空格

m

匹配多行数据,但都是从每行的起点和结尾匹配

s

将多行转换成一行后进行匹配,可匹配换行符\n字符串

模糊查询author为Tao的示例:

db.article.find(

{"author":{$regex:/Tao/, $options:'i'}}

)

查询结果

从上面查询结果中可以看到,数据格式也可以进行匹配到。

聚合操作

聚合操作可以实现分组、排序、分页、多集合关联查询等,使用语法格式:

db.collection.aggregate([

{聚合操作一},

{聚合操作二}

])

条件筛选

$match 用来进行条件筛选,可以使用一些条件限制来进行查询。

语法格式:

db.article.aggregate([

{ $match:  }

])

查询author = ytao且visitor > 100的文档

db.article.aggregate([

{ $match: {

$and: [

{"author": {$eq: "ytao"}},

{"visitor": {$gt: 100}}

]}

}

])

分组操作

$group 是分组操作符,类似于关系型数据库中的group by操作。其语法格式为:

db.collection.aggregate([

{

$group:{

"_id":"$",

:{:"$"}

}

}

])

其中运算符如下:

运算符

说明

$avg

当前组的平均数

$sum

当前组的总和

$min

当前组的最小值

$max

当前组的最大值

$first

当前组的第一个的值

$last

当前组的最后一个的值

$push

数组形式展示指定的当前组字段值

$addToSet

数组形式展示指定的当前组字段不重复值

分组求出每个author的visitor平均数的例子

db.article.aggregate([

{

$group:{

"_id":"$author",

"avg_visitor":{$sum:"$visitor"}

}

}

])

字段显示

指定查询后返回的字段使用**$project**,字段指定默认值为0,但是_id默认为1,显示指定字段语法为:

db.collection.aggregate([

{

$project:{

"": <0或1>,

"":<0或1>

}

}

])

展示title和visitor字段示例:

db.article.aggregate([

{

$project:{

"_id": 0,

"title": 1,

"visitor": 1

}

}

])

同时,$project还以搭配$split(字符串拆分)、$substr(截取字符串)、$concat(合并字符串)、$switch(条件判断)、$toLower(转换成小写)、$toUpper(转换成大写)、时间格式处理等等操作符进行操作,语法为:

db.collection.aggregate([

{

$project:{

"": {: },

"": {: },

}

}

])

例如将title中的字母都转换成大写

db.article.aggregate([

{

$project:{

"titleField":{ $toUpper:"$title" }

}

}

])

返回结果

排序操作

**sort排序用1和-1`表示正序和倒序。

语法格式:

db.collection.aggregate([

{

$sort:{

"": <1 或 -1>

}

}

])

按visitor字段名进行倒序排序:

db.article.aggregate([

{

$sort:{

"visitor": -1

}

}

])

排序结果

分页操作

分页使用 和limit 进行分页操作。$skip表示跳过文档的数量,$limit表示返回的文档数量,这两个指令使用,类似于关系型数据中的limit , 分页操作。

语法格式:

db.collection.aggregate([

{$skip: },

{$limit: }

])

查询第二页的两条数据示例:

db.article.aggregate([

{$skip: 2},

{$limit: 2}

])

返回结果

统计文档数量

$count用来统计文档数量,进行条件筛选时。

语法格式:

db.collection.aggregate([

{ $count: "" }

])

统计全部文档数量:

db.article.aggregate([

{ $count: "数量" }

])

统计结果:

多集合关联查询

$lookup 是用来多集合关联查询时使用的,类似于关系型数据库中的联表查询。

使用语法:

db.collection.aggregate([

{

$lookup: {

from: ,

localField: ,

foreignField: ,

as: 

}

}

])

在进行多集合关联查询演示前,先添加一个集合person,里面添加一条数据:

查询age = 18的集合:

db.article.aggregate([

{

$lookup: {

from: "person",

localField: "author",

foreignField: "author",

as: "person_info"

}

},

{

$match:{

"person_info.age": {$eq: 18}

}

}

])

返回结果:

总结

对 MongoDB 的常用查询操作进行了解后,可以发现它和关系型数据操作有很多类似的操作思想。对于这些操作的使用,相对也是较为灵活,提供的 API 也是较为强大,几乎能满足大部分使用场景的检索要求。掌握这些查询操作,可以更高效的获取 MongoDB 中的文档。

你可能感兴趣的:(mongo执行逻辑表达式)