- Manus,昨天还是国产AI的新爆款,今天就被冷嘲热讽,为什么?
几道之旅
人工智能智能体及数字员工人工智能
近日,一款名为Manus的通用型AIAgent产品在中国技术圈掀起了不小的波澜。这款由中国团队开发的产品宣称能够解决各类复杂多变的任务,并在GAIA基准测试中表现出色,超越了OpenAI最新的DeepResearch模型。然而,就在其发布不久之后,网络上关于它的评价却出现了明显的两极分化。本文将深入探讨Manus的技术特点、市场反响以及背后的原因。热情追捧与冷静审视最初,Manus凭借其出色的演示
- DeepSeek smallpond搅动大数据风云
彭铖洋
javascriptreactjs
DuckDB走向分布式?DeepSeek的smallpond涉足大数据DuckDB!降维打击传统大数据领域,搅动中台数据工程风云!DeepSeek正在利用smallpond(一种新的、简单的分布式计算方法)推动DuckDB超越其单节点根源。但它是否解决了可扩展性挑战——还是带来了新的权衡?DeepSeek最近搞了个大新闻。他们的R1模型在2025年1月发布时,就直接干翻了OpenAI的O1等竞争对
- 如何在移动端优化ALU,降低手机发热和功耗 高级TA必看指数★★★★☆
熊猫悟道
unityshader材质着色器unity游戏引擎
最近工作中,未了进一步提升美术渲染效果,不得已我们需要从数学的角度优化我们的图形渲染,减少不必要的ALU和MUL,从而提升运行效率。提供更多的渲染效果支持。当然,虽然我们游戏现在发热已经控制的比较完美了,但是我们还能从硬件级优化。接下来就是我这段时间用了半斤头发研究出来的方案。绝对干货,优化图形这块照搬即可。总结一下,可能的优化步骤包括:减少复杂数学运算,使用近似或预计算。优化向量化运算,利用SI
- 快速掌握EasyOCR应用实战指南
梦想画家
#python人工智能pythonpytorchEasyOCR
EasyOCR是一个开源的、支持多语言(28+种)和多文档格式(PDF/PNG/JPG/TIFF等)的OCR(光学字符识别)工具库,由HuggingFace团队维护。其目标是简化OCR的开发流程,提供易用、高性能的文本识别能力,适用于工业、教育、医疗等多个领域。EasyOCR核心组件解析1.特征提取(FeatureExtraction)技术模型:ResNet(残差网络)、VGG功能:将输入图像转换
- QT 中的元对象系统(三):QObject深入理解
流星雨爱编程
#Qt#C++进阶qt开发语言c++
目录1.简介2.特性2.1.对象树与内存管理2.2.信号与槽机制2.3.事件处理2.4.属性系统2.4.1.Q_PROPERTY配置的属性2.4.2.动态属性2.4.3.实现原理2.5.国际化支持2.6.定时器支持3.类设计(q和d指针)4.总结1.简介QObject这个class是QT对象模型的核心,它是所有Qt对象的基类。它为对象间通信(信号与槽机制)、事件处理、定时器支持以及对象树管理等功能
- Python多进程,多线程和异步实例
汤米先生
Python学习多线程python多进程
文章目录前言一、多进程1.进程间通信使用Queue队列2.多进程中的通信【一个往Queue里写,一个从Queue里读】3.进程池中的通信【只需要就上述的Queue()转换成Manager().Queue()】4.多进程拷贝文件【多个文件的拷贝】二、多线程1.加入互斥锁2.不加入互斥锁3.在屏幕上连续打印10次ABC4.死锁的产生5.针对死锁的处理方法6.生产者消费者模型【常用】—>比如爬虫:爬取数
- 复杂网络;社交网络;社区检测;节点重要性(重要节点识别);舆论动力学模型; 传染病模型 ;蓄意攻击 、随机攻击;网络鲁棒性、脆弱性、稳定性
xiao黄
复杂网络python复杂网络
复杂网络社交网络社区检测节点重要性(重要节点识别)舆论动力学模型传染病模型蓄意攻击随机攻击网络鲁棒性、脆弱性、稳定性Python基本的网络分析详细私聊网络拓扑图连通性网络效率下降
- PyTorch系列教程:编写高效模型训练流程
梦想画家
人工智能#pythonpytorch人工智能python
当使用PyTorch开发机器学习模型时,建立一个有效的训练循环是至关重要的。这个过程包括组织和执行对数据、参数和计算资源的操作序列。让我们深入了解关键组件,并演示如何构建一个精细的训练循环流程,有效地处理数据处理,向前和向后传递以及参数更新。模型训练流程PyTorch训练循环流程通常包括:加载数据批量处理执行正向传播计算损失反向传播更新权重一个典型的训练流程将这些步骤合并到一个迭代过程中,在数据集
- 新一代 AI 软件Manus 将重新将AI市场大洗牌
CircuitWizard
人工智能
Manus是一家专注于手部追踪、虚拟现实(VR)和增强现实(AR)技术的公司,其新一代AI软件结合了先进的机器学习和计算机视觉技术,致力于提升人机交互的自然性和效率。以下是关于Manus新一代AI软件的详细介绍及其核心功能:1.核心技术与创新Manus的AI软件基于以下技术突破:高精度手部追踪:通过深度学习算法和摄像头/传感器数据,实时捕捉手部骨骼、关节和肌肉的细微动作,精度可达亚毫米级,支持复杂
- C语言实现优先队列
嵌入式系统攻城狮
AD18c语言数据结构开发语言
优先队列(堆)是允许至少下列两种操作的数据结构:Insert(插入),它的工作显而易见的,以及DeleteMin(删除最小者),它的工作是找出、返回和删除优先队列中最小的元素。如同大多数数据结构那样,有时可能要添加一些操作,但这些添加的操作属于扩展的操作,而不属于图1所描述的基本模型。使操作被快速执行的性质是堆序(heaporder)性,由于我们想要快速地找到最小元因此最小元应该在根上。应用这个逻
- 【自然语言处理-NLP】情感分析与主题建模
云博士的AI课堂
深度学习哈佛博后带你玩转机器学习自然语言处理人工智能情感分析主题建模深度学习机器学习NLP
以下内容详细剖析了NLP中情感分析(SentimentAnalysis)和主题建模(TopicModeling)的技术与方法,分别展示如何从文本中提取情感倾向和潜在主题,并提供示例代码和讲解,可在Python环境下直接运行。目录情感分析(SentimentAnalysis)1.1概念与方法概览1.2传统机器学习方法1.3深度学习与预训练模型1.4代码示例:基于机器学习的情感分类主题建模(Topic
- 服务端创建实战 - MCP协议(大模型上下文协议)快速入门
同学小张
人工智能gptAIGCDeepSeek学习开源协议MCP
大家好,我是同学小张,+v:jasper_8017一起交流,持续学习AI大模型应用实战案例,持续分享,欢迎大家点赞+关注,订阅我的大模型专栏,共同学习和进步。在本文中,我们将从零到一构建一个简单的MCP天气服务器,从实践过程中,熟悉MCP协议的使用。1.MCP服务器介绍服务器提供专门的上下文和功能,通过MCP原语公开资源、工具和提示,独立运行,具有明确的职责,通过客户端接口请求采样,必须遵守安全约
- 【AI大模型应用开发】从CoT到ToT,再到ReAct,提升大模型推理能力的方式探索(含代码)
同学小张
大模型人工智能AIGC笔记思维链思维树ReActgpt
大家好,我是同学小张,持续学习C++进阶知识和AI大模型应用实战案例,持续分享,欢迎大家点赞+关注,共同学习和进步。今天我们主要学习下当下提高大模型推理能力的几个主要技术,从CoT(ChainofThought)到TOT(TreeofThought),再到ReAct。从概念到实现代码框架,一点点去理解这些思想背后的原理。文章目录1.CoT(ChainofThought,思维链)1.1基本使用1.2
- DeepSeek保姆级教程!零基础玩转「最强开源模型」,手把手教你成为AI高手(附实战代码+资源包)
小蛋6g
java人工智能
“2024年AI圈杀出一匹黑马——国产大模型DeepSeek!无需高端显卡,本地3步部署,小白也能玩转智能对话、代码生成!本文从原理到实战,带你解锁DeepSeek-R1-Lite-Preview,文末免费领取模型权重+调参秘籍!”---一、DeepSeek凭什么火?揭秘国产大模型的1.1开源界的“性价比之王”-低门槛部署:仅需8GB内存+普通CPU即可运行,学生党宿舍电脑也能跑-性能对标国际:在
- 阿里淘天多模态大模型面经分享
大模型与自然语言处理
NLP与大模型面试人工智能算法深度学习大模型多模态大模型
最近春招和实习已开启了。不同以往的是,当前职场环境已不再是那个双向奔赴时代了。求职者在变多,HC在变少,岗位要求还更高了。最近,我们又陆续整理了很多大厂的面试题,帮助一些球友解惑答疑,分享技术面试中的那些弯弯绕绕。《大模型面试宝典》(2025版)正式发布!喜欢本文记得收藏、关注、点赞。部门与岗位淘天-搜推智能产品事业部-多模态大模型总结整体来说面试体验比较好,问的问题都不难,面试官也都不错,遇到一
- 搜广推校招面经三十八
Y1nhl
搜广推面经算法pytorch推荐算法搜索算法机器学习
字节推荐算法一、场景题:在抖音场景下为用户推荐广告词,吸引用户点击搜索,呈现广告这一流程的关键点以及可能遇到的困难。二、Transformer中对梯度消失或者梯度爆炸的处理在Transformer模型中,梯度消失和梯度爆炸是深度学习中常见的问题,尤其是在处理长序列数据时。为了克服这些问题,Transformer采用了一系列技术:2.1.残差连接(ResidualConnections)每个子层(包
- OpenManus:快速复刻Manus项目的技术路径与实施策略
花生糖@
manusopenmanusAI开源人工智能
一、敏捷复刻的工程化基础1.1架构解耦设计OpenManus采用"微内核+插件"架构模式,其核心引擎仅保留智能体调度、消息路由等基础功能,将模型接入、任务处理等模块进行组件化封装。这种设计使得复刻项目时能够快速剥离非必要模块,例如:模块替换:通过修改config.toml的llm配置段,可在1小时内完成从GPT-4到Claude3的模型切换功能裁剪:删除vision模块相关代码及配置项即可实现15
- DeepSeek 医疗大模型微调实战讨论版(第一部分)
Allen_LVyingbo
数智化医院2025健康医疗python人工智能互联网医院算法
DeepSeek医疗大模型微调实战指南第一部分DeepSeek作为一款具有独特优势的大模型,在医疗领域展现出了巨大的应用潜力。它采用了先进的混合专家架构(MoE),能够根据输入数据的特性选择性激活部分专家,避免了不必要的计算,极大地提高了计算效率和模型精度。这种架构使得DeepSeek在处理大规模医疗数据时,能够更加高效地提取关键信息,为医疗决策提供有力支持。例如,在分析海量的医学影像数据时,De
- 8.6 “6.7GB→3.9GB!“Facebook OPT模型4-bit量化实战:显存狂降85%教程
少林码僧
掌握先机!从0起步实战AI大模型微调打造核心竞争力语言模型人工智能gpt
6.7GB→3.9GB!FacebookOPT模型4-bit量化实战:显存狂降85%教程实战FacebookOPT模型量化模型量化原理与技术选型在模型量化实战前,我们需要理解OPT模型的显存占用特点。以OPT-6.7B模型为例,其参数量为6.7B,每个参数默认使用FP32(4字节)存储时,显存占用计算公式为:显存占用=参数量×数据类型字节数=6.7B×4B=26.8GB当前主流的量化技术路线对比如
- 鸿蒙跨平台框架ArkUI-X
搜狐技术产品小编2023
harmonyos华为
01引言目前,移动端主流跨平台方案有Flutter、ReactNative、uni-app等等,还有刚推出不久的Compose-Multiplatform,真所谓是百花齐放。这些框架各有特点,技术实现各有差异,比如Flutter通过Dart编写的UI描述对接Flutter渲染引擎,ReactNative则是借助大前端成熟的发展背景,利用JS引擎生成UI描述,渲染时转化为原生控件,复用了原生渲染能力
- 【深度学习】PyTorch v2.6 Overview
OpenSeek
人工智能#机器学习#深度学习pythonpytorch人工智能
PyTorchv2.6OverviewPythonAPILibrariesPyTorch是一个优化的张量库,用于使用GPU和CPU进行深度学习。PythonAPI序号API名称解释1torchPyTorch核心库(中文:火炬)PyTorch的核心库,提供了张量操作、自动求导等基础功能。2torch.nn神经网络模块包含构建神经网络所需的各种模块,如层、损失函数等。3torch.nn.functio
- 2020年精排模型调研
Marcus-Bao
机器不学习人工智能机器学习大数据算法
❝本文经作者同意转载自:https://zhuanlan.zhihu.com/p/335781101作者:Ruhjkg编辑:MarcusBao谢绝任何形式的二次转载!❞2020年精排模型调研前言最近由于工作需要调研了一下2020年关于精排模型的进展。在广告推荐领域的CTR预估问题上,早期以LR+人工特征工程为主的机器学习方法,但由于人工组合特征工程成本较高,不同任务难以复用。后面FM因子分解机提出
- PyTorch 训练循环全攻略:从零到精通的深度学习秘籍
吴师兄大模型
PyTorch深度学习pytorch人工智能训练循环LLM大模型python
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 【快速入门】本地知识库部署:FastGPT与Dify轻松上手全指南!
大模型老炮
大模型入门大模型人工智能产品经理大模型学习知识库部署AI
本文主要内容本地部署Dify、FastGPT、OllamaDify、FastGPT对接一些目前免费的LLM大语言AI模型Dify、FastGPT对接Ollama本地模型大家好,我是一名喜欢在家折腾本地部署的开发者,这次我来分享如何在本地运行Ollama,并将它与FastGPT和Dify两个知识库对接。看起来复杂,但其实步骤并不难。我会尽量把内容讲得清楚易懂,加上一些幽默,让整个过程更有趣。第一步:
- python搭建NPL模型的详细步骤和代码
百锦再@新空间代码工作室
包罗万象python开发语言djangoflaskpygamepip
目录**一、环境准备****二、数据准备****三、文本预处理****1.清理文本****四、特征工程****1.TF-IDF****2.Word2Vec****五、搭建NLP模型****1.逻辑回归****2.LSTM深度学习模型****六、使用预训练的BERT模型****七、模型评估****八、部署模型****总结**1.**人机交互的核心技术**2.**推动AI技术发展的动力**3.**广泛
- DeepSeek R1-32B医疗大模型的完整微调实战分析(全码版)
Allen_LVyingbo
医疗高效编程研发健康医疗人工智能python
DeepSeekR1-32B微调实战指南├──1.环境准备│├──1.1硬件配置││├─全参数微调:4*A10080GB││└─LoRA微调:单卡24GB│├──1.2软件依赖││├─PyTorch2.1.2+CUDA││└─Unsloth/ColossalAI│└──1.3模型加载│├─4bit量化加载│└─FlashAttention2加速├──2.数据集构建│├──2.1数据源││├─CMD
- 在 PiscTrace 上使用 YOLO 进行预测与 MiDaS 景深补偿:体验纯视觉自动驾驶的数据分析
那雨倾城
PiscTrace人工智能计算机视觉图像处理自动驾驶YOLO视觉检测
随着自动驾驶技术的不断发展,视觉感知系统逐渐成为车辆感知的核心组件。PiscTrace作为一款支持高效视图处理的桌面应用,集成了先进的计算机视觉工具,如YOLO目标检测模型和MiDaS景深估计模型,能够为纯视觉自动驾驶的实现提供强大的支持。通过这两个模型的结合,PiscTrace可以提供高精度的目标识别与环境感知功能,帮助用户进行实时的驾驶数据分析,为决策系统提供宝贵的数据支持。本文将详细介绍如何
- kokoro 82M参数的声音模型kokoro-onnx,支持中文
skywalk8163
人工智能人工智能
kokoro大约是官网:github.comonnx推理官网:GitHub-thewh1teagle/kokoro-onnx:TTSwithkokoroandonnxruntime可以参考这个文档使用:Kokoro-82M实战:最强TTS开源模型Windows本地极简部署完全攻略_kokorotts本地部署-CSDN博客实践下来英文不错,中文还欠缺些。kokoro82M参数的声音模型介绍❤️Kok
- 探索vLLM Chat的强大功能:与OpenAI API协议的无缝集成
sjufgwgfhoia
python
引言在AI技术快速发展的时代,能够灵活集成不同API对于开发者来说显得尤为重要。vLLMChat通过模拟OpenAIAPI协议,为现有应用提供了无缝的替换选项。本篇文章将介绍如何使用langchain-openai包来开始使用vLLMChat模型。主要内容1.vLLMChat概述vLLMChat允许开发者部署一个能够模拟OpenAIAPI协议的服务器。这意味着现有依赖OpenAIAPI的应用可以直
- 从零用java实现 小红书 springboot vue uniapp (2)主页优化
顽疲
java仿写小红书javaspringbootvue.js
前言移动端演示http://8.146.211.120:8081/#/前面的文章我们基本完成了主页的布局今天我们具体的去进行实现并且分享我开发时遇到的问题首先先看效果java仿小红书主页实现效果为1.顶端全屏切换2.上划加载更多3.下拉当前页整体刷新顶端全屏切换我们选择gui-switch-navigation结合swiperswiper-item进行实现关键代码.................
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,