- MyBatis 学习经验分享
吱屋猪_
mybatis学习经验分享
MyBatis是一个广泛使用的Java持久层框架,它为开发者提供了灵活、易用的数据库操作方式。与Hibernate等全自动化ORM(对象关系映射)框架不同,MyBatis采用了更精细的控制,允许开发者在SQL语句和Java对象之间进行映射。通过它,开发者可以直接编写SQL查询,灵活处理数据库操作,并且仍然享受到框架提供的简化工作流程。以下是我在学习MyBatis过程中的一些经验分享。1.理解MyB
- 人工智能之数学基础:数学对人工智能技术发展的作用
每天五分钟玩转人工智能
机器学习深度学习之数学基础人工智能深度学习机器学习神经网络自然语言处理数学
本文重点数学是人工智能技术发展的基础,它提供了人工智能技术所需的数学理论和算法,包括概率论、统计学、线性代数、微积分、图论等等。本文将从以下几个方面探讨数学对人工智能技术发展的作用。概率论和统计学概率论和统计学是人工智能技术中最为重要的数学分支之一。概率论和统计学的应用范围非常广泛,包括机器学习、数据挖掘、自然语言处理、计算机视觉等领域。在人工智能技术中,概率论和统计学主要用于处理不确定性的问题,
- 数学中的“矩”
heraldww
数学概率论人工智能机器学习
数学中的“矩”矩的数学意义,高度总结:数学上,“矩”是一组点组成的模型的特定的数量测度。在力学和统计学中都有用到“矩”。如果这些点代表“质量”,那么:零阶矩表示所有点的质量;一阶矩表示质心;二阶矩表示转动惯量。如果这些点代表“概率密度”,那么:零阶矩表示这些点的总概率(也就是1);一阶矩表示期望;二阶(中心)矩表示方差;三阶(中心)矩表示偏斜度;四阶(中心)矩表示峰度;这个数学上的概念和物理上的“
- 本福特定律: 为什么银行存款、河流长度等集合的首位数字更容易出现 1 而不是 9?
go
银行存款、河流长度等数据的首位数字更容易出现1而不是9,这背后的数学原理是本福特定律(Benford'sLaw)。本福特定律的概述本福特定律(Benford'sLaw)又称首位数字定律,是一种描述自然生成数据中数字分布规律的统计学现象。该定律揭示了在多种实际数据集中,数字1-9作为首位数字出现的概率呈现特定规律性分布。数学表达式首位数字d出现的概率为:P(d)=log₁₀(1+1/d),其中d∈{
- LoRA中黑塞矩阵、Fisher信息矩阵是什么
ZhangJiQun&MXP
教学2021论文2024大模型以及算力矩阵机器学习人工智能transformer深度学习算法线性代数
LoRA中黑塞矩阵、Fisher信息矩阵是什么1.三者的核心概念黑塞矩阵(Hessian)二阶导数矩阵,用于优化问题中判断函数的凸性(如牛顿法),或计算参数更新方向(如拟牛顿法)。Fisher信息矩阵(FisherInformationMatrix,FIM)统计学中衡量参数估计的不确定性,反映数据中包含的关于参数的信息量。在机器学习中常用于自然梯度下降(NaturalGradientDescent
- 统计机器学习 (Statistical Machine Learning) 原理与代码实例讲解
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
统计机器学习(StatisticalMachineLearning)原理与代码实例讲解1.背景介绍统计机器学习是现代人工智能和数据科学的核心领域之一。它结合了统计学和计算机科学的理论与方法,通过数据驱动的方式来构建预测模型和决策系统。统计机器学习不仅在学术研究中占据重要地位,还在工业界有广泛应用,如推荐系统、图像识别、自然语言处理等。2.核心概念与联系2.1统计学与机器学习的关系统计学关注数据的收
- 面试经验分享 | 某安全厂商HW面试经验
渗透测试老鸟-九青
面试经验分享安全web安全网络xsscsrf
目录:所面试的公司:某安全厂商所在城市:安徽省面试职位:蓝初面试过程:面试官的问题:所面试的公司:某安全厂商所在城市:安徽省面试职位:蓝初面试过程:腾讯会议(语音)面试过程:整体流程就是自我介绍加上一些问题问题balabalabala。。。由于面的是蓝队所以渗透部分不会太多,回答部分基本上是我的原答案,不保证正确。面试总体大概分三个大块(下面跳过自我介绍部分)面试官的问题:1、sql注入原理攻击者
- 如果我想成为一名大数据和算法工程师,我需要学会哪些技能,获取大厂的offer
红豆和绿豆
杂谈大数据算法
成为一名大数据和算法工程师并获取大厂Offer,需要掌握一系列核心技能,并具备丰富的项目经验与扎实的理论基础。以下是详细的技能要求和建议:---###**1.数学与理论基础**-**数学知识**:掌握线性代数、微积分、概率论和统计学,这些是设计和理解算法的基础。-**机器学习理论**:深入理解常见机器学习算法(如线性回归、逻辑回归、决策树、随机森林、SVM、K-means等),了解其原理、优缺点及
- java面试合集
云端源想
java面试开发语言
背景:随着软件行业竞争日益激烈,Java作为最广泛应用的编程语言之一,其开发者在求职过程中面临的面试挑战也日益增大。为了帮助Java程序员更好地准备面试,提升竞争力,我们计划长期更新一个全面、深入的《Java面试合集》专栏。本专栏旨在覆盖从Java基础到高级技术点,以及实战经验分享,为不同层次的Java开发者提供一站式面试资源。《Java面试合集》专栏的设计需要兼顾技术深度、实战场景与行业趋势,采
- 定积分及其在概率论与统计学中的应用
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
定积分及其在概率论与统计学中的应用1.背景介绍1.1定积分的概念定积分是微积分学中一个基本概念,它是对连续函数在一个区间上的累积变化量进行测度。定积分可以看作是对无限小量的累加,是对函数在给定区间内的面积进行测量。1.2定积分在概率论与统计学中的重要性在概率论和统计学中,定积分扮演着非常重要的角色。概率论中的概率密度函数、累积分布函数等核心概念都需要借助定积分来定义和计算。统计学中的置信区间估计、
- AI人工智能中的概率论与统计学原理与Python实战:Python实现概率模型
AI天才研究院
AI实战AI大模型企业级应用开发实战大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
1.背景介绍随着人工智能技术的不断发展,概率论与统计学在人工智能领域的应用越来越广泛。概率论与统计学是人工智能中的基础知识之一,它们在机器学习、深度学习、自然语言处理等领域都有着重要的作用。本文将介绍概率论与统计学的核心概念、算法原理、具体操作步骤以及Python实现方法,并通过具体代码实例进行详细解释。2.核心概念与联系2.1概率论与统计学的区别概率论是一门数学学科,它研究随机事件发生的可能性。
- 西安电子科技大学 | 近期官方视频+文章(涵盖招生+录取统计)
西电研梦
西电经验分享考研
今年、明年考研的学弟学妹们可以看看涵盖今年讲课西电录取统计【西安电子科技大学官方】研究生招生宣传你一定值得一看02、计算机科学与技术学院(近期视频+文章)QQ群:867684593①、西电考研|833、834初+复试第一名许学长经验分享https://www.bilibili.com/video/BV1oE4m1R72a/②、25西电考研|计科院专业课139分学长经验分享https://www.b
- 新手村:数据预处理-异常值检测方法
嘉羽很烦
机器学习机器学习
机器学习中异常值检测方法一、前置条件知识领域要求编程基础Python基础(变量、循环、函数)、JupyterNotebook或PyCharm使用。统计学基础理解均值、中位数、标准差、四分位数、正态分布、Z-score等概念。机器学习基础熟悉监督/无监督学习、分类、聚类、回归等基本概念。数据预处理数据清洗、特征缩放(标准化/归一化)、数据可视化(Matplotlib/Seaborn)。二、渐进式学习
- RAG技术深度解析:从基础Agent到复杂推理Deep Search的架构实践
小爷毛毛(卓寿杰)
系统架构与解决方案搜索推荐架构语言模型人工智能自然语言处理
重磅推荐专栏:《大模型AIGC》《课程大纲》《知识星球》本专栏致力于探索和讨论当今最前沿的技术趋势和应用领域,包括但不限于ChatGPT和StableDiffusion等。我们将深入研究大型模型的开发和应用,以及与之相关的人工智能生成内容(AIGC)技术。通过深入的技术解析和实践经验分享,旨在帮助读者更好地理解和应用这些领域的最新进展一、什么是RAGAgent?1.从信息处理到智能生成在自然语言处
- 23章9节:分层随机抽样及其在R语言中的实现与验证
DAT|R科学与人工智能
用R探索医药数据科学r语言开发语言r-4.2.1机器学习人工智能算法
在统计学和数据科学的实际工作中,抽样方法始终扮演着至关重要的角色。如何从庞大的总体中获取具有代表性的样本,一直是数据分析过程中需要面对的核心问题之一。分层随机抽样作为一种常用的抽样方法,因其能够针对总体中的不同亚群体(层)进行有针对性的抽样,从而提高样本代表性、降低抽样误差,被广泛应用于社会调查、市场研究、医学试验等各个领域。本文旨在系统地阐述分层随机抽样的理论基础、抽样方法及其在R语言中的实现,
- 【经验分享】SpringBoot集成Websocket开发 之 使用由 Jakarta EE 规范提供的 API开发
Xcong_Zhu
学习笔记经验分享springbootwebsocket
在SpringBoot中整合、使用WebSocketWebSocket是一种基于TCP协议的全双工通信协议,它允许客户端和服务器之间建立持久的、双向的通信连接。相比传统的HTTP请求-响应模式,WebSocket提供了实时、低延迟的数据传输能力。通过WebSocket,客户端和服务器可以在任意时间点互相发送消息,实现实时更新和即时通信的功能。WebSocket协议经过了多个浏览器和服务器的支持,成
- 应用统计学学什么科目_统计学考研科目分别有哪些?你都知道吗
心言星愿
应用统计学学什么科目
在现实社会社会中统计学的应用范围是比较广泛的,想要报考统计学的朋友也是不再少数的,那么问题就来了关于统计学应该要学习哪一些科目呢,下面就来详细的看一下关于统计学方向具体的统计学考研科目分别有那些。首先对于统计学来讲英语政治史必然的初试科目,而专业课的考研科目具体是什么还是要看你选择的院校的实际出题情况了,所以在确定了考研科目之后一定要在在确定一下你想去的高校,以便能够更好的准备。在来看一下在学校方
- 2025 年最值得收听的 AI 播客推荐!助你轻松掌握人工智能前沿动态!
真智AI
人工智能开发语言机器学习
如今,几乎每个人都被告知需要提升技能,而当前许多组织最看重的技能之一就是人工智能(AI)。学习AI相关技能通常涉及数学、统计学和机器学习,但除此之外,你还需要了解行业趋势、业内人士的观点以及各大公司的动态。然而,学习并不意味着时刻都要埋头苦读!有时候,你需要给大脑一个喘息的机会,同时依然能获取有价值的信息。而收听AI相关的播客,就是一个轻松高效的方式。以下是2025年你必须关注的AI播客!1.Th
- 智商测试原理全解析:从心理学到统计学,一文读懂(包含数据接口
2401_84193787
职场发展职场和发展求职招聘单一职责原则
智力测验(IntelligenceTest)是有关人的普通心智功能的各种测验的总称,又称普通能力测验。编制这类测验的目的是为了综合评定人的智力水平。早期编制的智力测验多采取个人测验的形式,这是单独评估心智功能的最好方法。国际上常用的个人智力测验主要有两种:斯坦福-比奈智力量表和韦克斯勒智力量表。现在常用测验包括:比奈-西蒙智力量表、韦克斯勒智力量表、斯坦福一比奈智力量表、瑞文标准智力测验、军队甲种
- HTML5拼图游戏开发经验分享
木木黄木木
html5前端html
HTML5拼图游戏开发经验分享这里写目录标题HTML5拼图游戏开发经验分享前言项目架构1.文件结构2.核心功能模块技术要点解析1.响应式布局2.图片处理3.拖拽交互4.动画效果性能优化开发心得项目亮点总结源码分享写在最后前言在Web前端开发领域,通过实战项目来提升编程技能是最有效的学习方式之一。今天我要分享一个HTML5拼图游戏的开发经验,这个项目涵盖了现代前端开发的多个重要概念,包括响应式设计、
- 《 bilibili-起步级 用户模块接口文档 经验分享 ~》
撒乎乎不撒
大工程实时更新经验分享springboot后端前端
bilibili-用户模块接口文档-经验分享~数据库er关系图:迅速跳转链接枚举码实体类:迅速跳转链接使用apifox.json格式导入接口文档步骤登录Apifox。新建文件,将代码粘贴到该文件,并更改后缀为.apifox.json进入项目,点击“导入”。选择“Apifox”格式,导入文件。代码{"apifoxProject":"1.0.0","$schema":{"app":"apifox","
- 第81期 | GPTSecurity周报
aigc网络安全
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。SecurityPapers1.大语言模型与代码安
- 23章11节:自助抽样及其在R语言中的实现与验证
DAT|R科学与人工智能
用R探索医药数据科学r语言开发语言r-4.2.1microsoft信息可视化
在统计学中,数据分析的核心任务之一是如何在样本数据的基础上推断总体的性质。传统方法往往依赖于已知的概率分布假设和解析推导,但在现实问题中,我们往往无法准确得知总体分布,或者数据样本量较小,难以满足经典统计推断方法的要求。自助抽样作为一种非参数的计算方法,为我们提供了基于样本数据“自我重复”构建抽样分布的途径。1977年,斯坦福大学的B.Efron在著名论文《BootstrapMethods:Ano
- ANOVA:在Python中构建和理解ANOVA(方差分析)
python收藏家
python数据科学python
ANOVA(方差分析)是一种统计技术,用于确定三个或更多独立(不相关)组的平均值之间是否存在任何统计学显著差异。它有助于检验关于组间均值差异的假设,在比较多个组时特别有用。在Python中,可以使用scipy.stats模块中的f_oneway函数来执行单因素方差分析(one-wayANOVA),或者使用statsmodels库中的ANOVA类来进行更复杂的方差分析。重要概念总体均值(Popula
- 【人工智能数学基础】——深入详解贝叶斯理论:掌握贝叶斯定理及其在分类和预测中的应用
猿享天开
人工智能数学基础专讲分类数据挖掘人工智能贝叶斯数学
深入详解贝叶斯理论:掌握贝叶斯定理及其在分类和预测中的应用贝叶斯理论(BayesianTheory)是概率论和统计学中的一个重要分支,它以托马斯·贝叶斯(ThomasBayes)命名,主要关注如何根据新的证据更新对某一事件的信念。贝叶斯定理作为贝叶斯理论的核心,在机器学习、数据分析、决策科学等多个领域中具有广泛的应用。本文将深入探讨贝叶斯定理的理论基础、数学表达及其在分类和预测中的应用,辅以实例和
- R语言将向量数据按照行方式转化为矩阵数据(设置参数byrow为TRUE)
sdgfbhgfj
R语言初见机器学习数据挖掘人工智能数据分析r语言
R语言将向量数据按照行方式转化为矩阵数据(设置参数byrow为TRUE)目录R语言将向量数据按照行方式转化为矩阵数据(设置参数byrow为TRUE)R语言是解决什么问题的?R语言将向量数据按照行方式转化为矩阵数据(设置参数byrow为TRUE)安利一个R语言的优秀博主及其CSDN专栏:R语言是解决什么问题的?R是一个有着统计分析功能及强大作图功能的软件系统,是由奥克兰大学统计学系的RossIhak
- 从零手撕 LLaMa3 项目爆火(图解+代码)
机器学习社区
大模型深度学习大模型算法人工智能RAG多模态大模型Llama面试题
节前,我们组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。针对大模型技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备面试攻略、面试常考点等热门话题进行了深入的讨论。汇总合集《大模型面试宝典》(2024版)发布!一个月前,Meta发布了开源大模型llama3系列,在多个关键基准测试中优于业界SOTA模型,并在代码生成任务上全面领先。此后,开发
- 机器学习数学基础:29.t检验
@心都
机器学习人工智能
一、t检验的定义与核心思想(一)定义t检验(Student’st-test)是一种在统计学领域中广泛应用的基于t分布的统计推断方法。其主要用途在于判断样本均值与总体均值之间,或者两个独立样本的均值之间、配对样本的均值之间是否存在显著差异。例如,在教育研究中,可以通过t检验判断某个班级学生的平均成绩与全校学生的平均成绩是否有显著差异;在医学实验里,可用于比较实验组和对照组的患者某项生理指标的均值是否
- 深度学习和机器学习的差异
The god of big data
教程深度学习机器学习人工智能
一、技术架构的本质差异传统机器学习(MachineLearning)建立在统计学和数学优化基础之上,其核心技术是通过人工设计的特征工程(FeatureEngineering)构建模型。以支持向量机(SVM)为例,算法通过核函数将数据映射到高维空间,但特征提取完全依赖工程师的领域知识。这种"人工特征+浅层模型"的结构在面对复杂非线性关系时容易遭遇性能瓶颈。深度学习(DeepLearning)作为机器
- 面试必备:Kafka高频面试题及答案解析
江-小北
面试kafka职场和发展
本文,已收录于,我的技术网站aijiangsir.com,有大厂完整面经,工作技术,架构师成长之路,等经验分享Kafka中的ProducerAPI是如何工作的?Kafka中的ProducerAPI允许应用程序发布一流的数据到一个或多个Kafka主题。它的工作原理包括:1、创建Producer实例:通过配置Producer的各种属性(如服务器地址、序列化方式等)来创建Producer实例。2、发送消
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla