A group of friends went on holiday and sometimes lent each other money. For example, Alice paid for Bill's lunch for $10. Then later Chris gave Alice $5 for a taxi ride. We can model each transaction as a tuple (x, y, z) which means person x gave person y $z. Assuming Alice, Bill, and Chris are person 0, 1, and 2 respectively (0, 1, 2 are the person's ID), the transactions can be represented as [[0, 1, 10], [2, 0, 5]]
.
Given a list of transactions between a group of people, return the minimum number of transactions required to settle the debt.
Note:
- A transaction will be given as a tuple (x, y, z). Note that
x ≠ y
andz > 0
. - Person's IDs may not be linear, e.g. we could have the persons 0, 1, 2 or we could also have the persons 0, 2, 6.
Example 1:
Input: [[0,1,10], [2,0,5]] Output: 2 Explanation: Person #0 gave person #1 $10. Person #2 gave person #0 $5. Two transactions are needed. One way to settle the debt is person #1 pays person #0 and #2 $5 each.
Example 2:
Input: [[0,1,10], [1,0,1], [1,2,5], [2,0,5]] Output: 1 Explanation: Person #0 gave person #1 $10. Person #1 gave person #0 $1. Person #1 gave person #2 $5. Person #2 gave person #0 $5. Therefore, person #1 only need to give person #0 $4, and all debt is settled.
这道题给了一堆某人欠某人多少钱这样的账单,问我们经过优化后最少还剩几个。其实就相当于一堆人出去玩,某些人可能帮另一些人垫付过花费,最后结算总花费的时候可能你欠着别人的钱,其他人可能也欠你的欠。我们需要找出简单的方法把所有欠账都还清就行了。这道题的思路跟之前那道Evaluate Division有些像,都需要对一组数据颠倒顺序处理。我们使用一个哈希表来建立每个人和其账户的映射,其中账户若为正数,说明其他人欠你钱;如果账户为负数,说明你欠别人钱。我们对于每份账单,前面的人就在哈希表中减去钱数,后面的人在哈希表中加上钱数。这样我们每个人就都有一个账户了,然后我们接下来要做的就是合并账户,看最少需要多少次汇款。我们先统计出账户值不为0的人数,因为如果为0了,表明你既不欠别人钱,别人也不欠你钱,如果不为0,我们把钱数放入一个数组accnt中,然后调用递归函数。在递归函数中,我们初始化结果res为整型最大值,然后我们跳过为0的账户,然后我们开始遍历之后的账户,如果当前账户和之前账户的钱数正负不同的话,我们将前一个账户的钱数加到当前账户上,这很好理解,比如前一个账户钱数是-5,表示张三欠了别人五块钱,当前账户钱数是5,表示某人欠了李四五块钱,那么张三给李四五块,这两人的账户就都清零了。然后我们调用递归函数,此时从当前改变过的账户开始找,num表示当前的转账数,需要加1,然后我们用这个递归函数返回的结果来更新res,后面别忘了复原当前账户的值。遍历结束后,我们看res的值如果还是整型的最大值,说明没有改变过,我们返回num,否则返回res即可,参见代码如下:
class Solution { public: int minTransfers(vectorint>>& transactions) { unordered_map<int, int> m; for (auto t : transactions) { m[t[0]] -= t[2]; m[t[1]] += t[2]; } vector<int> accnt(m.size()); int cnt = 0; for (auto a : m) { if (a.second != 0) accnt[cnt++] = a.second; } return helper(accnt, 0, cnt, 0); } int helper(vector<int>& accnt, int start, int n, int num) { int res = INT_MAX; while (start < n && accnt[start] == 0) ++start; for (int i = start + 1; i < n; ++i) { if ((accnt[i] < 0 && accnt[start] > 0) || (accnt[i] > 0 && accnt[start] < 0)) { accnt[i] += accnt[start]; res = min(res, helper(accnt, start + 1, n, num + 1)); accnt[i] -= accnt[start]; } } return res == INT_MAX ? num : res; } };
类似题目:
Evaluate Division
参考资料:
https://discuss.leetcode.com/topic/68755/share-my-o-n-npc-solution-tle-for-large-case/6
LeetCode All in One 题目讲解汇总(持续更新中...)