- 如何分析用户满意度?这4种常用满意度分析模型,一定要学会
spssau
说到问卷调查,满意度调查算是众多问卷调查类型中应用最广泛的。不论是大小企业,或是政府、机构都可以通过满意度问卷调查了解服务对象的满意程度。比如医院需要了解患者对医护人员服务的满意程度,企业需要了解顾客对自家产品的满意程度及需求,政府需要了解公众的的服务需求等等。本文将介绍4种常用的顾客满意度模型,以及如何使用SPSSAU进行这些模型的建立和分析。1、四分图四分图,又称为四象限图,是一种简单实用的满
- 主流编程语言全景图:从Python到Rust的深度解析
万能小贤哥
pythonrust开发语言
2024年编程语言生态报告显示,全球开发者使用的语言数量已达260+,但真正主导行业的不到20种。本文带你穿透技术迷雾,掌握8大核心语言的本质差异。一、选择编程语言的黄金标准图表代码二、八大主流语言对比解析1.Python-通用胶水语言特性:动态类型+缩进语法丰富的库生态(20万+包)GIL全局锁限制并发适用场景:python#机器学习示例(TensorFlow)importtensorflowa
- 边缘智能革命:嵌入式机器学习如何让万物“思考”
万能小贤哥
机器学习人工智能
当智能手表精准识别你的健身动作,工业传感器预测设备故障于毫秒之间,农业传感器自动调节灌溉水量——这些并非科幻场景,而是嵌入式机器学习(EmbeddedMachineLearning,或TinyML)正在悄然重塑的现实。这场发生在设备边缘的智能革命,正将AI从云端的数据中心拉近到我们指尖的每一台设备中。一、嵌入式机器学习:定义与核心价值嵌入式机器学习是指在资源极端受限的微控制器(MCU)、微处理器(
- KL散度:信息差异的量化标尺 | 从概率分布对齐到模型优化的核心度量
不对称性、计算本质与机器学习的普适应用本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、核心定义与数学本质KL散度(Kullback-LeiblerDivergence)用于衡量两个概率分布PPP和QQQ的差异程度,定义为:DKL(P∥Q)=∑x∈XP(x)logP(x)Q(x)(离散形式)D_
- 深度学习:让 AI 拥有 “思考” 能力的核心技术
田园Coder
人工智能科普人工智能科普
1.深度学习:突破传统的AI“进阶版”1.1什么是深度学习?深度学习是机器学习的一个分支,它通过模拟人脑神经网络的多层结构,让AI能够自动学习数据中的复杂特征,从而完成更高级的认知任务。例如,传统机器学习需要人类手动提取“猫有尖耳朵、胡须”等特征,而深度学习能直接从原始图片中,自主学习从像素到轮廓、再到整体形态的多层特征,最终实现更精准的识别。这种“自主提取特征”的能力,让深度学习突破了传统AI的
- 推荐文章:《同济大学软件学院万院长谈择业》
weixin_34087301
同济大学软件学院万院长谈择业一、关于企业计算方向企业计算(EnterpriseComputing)是稍时髦较好听的名词,主要是指企业信息系统,如ERP软件(企业资源规划)、CRM软件(客户关系管理)、SCM软件(供应链管理,即物流软件),银行证券软件,财务软件,电子商务/政务(包括各种网站),数据仓库,数据挖掘,商务智能等企业信息管理系统。企业计算领域对人才的需求显然永远是数量最大的,因为这是计算
- 117、Python机器学习:数据预处理与特征工程技巧
多多的编程笔记
python机器学习开发语言
Python开发之机器学习准备:数据预处理与特征工程机器学习是当前人工智能领域的热门方向之一。而作为机器学习的核心组成部分,数据预处理与特征工程对于模型的性能有着至关重要的影响。本文将带领大家了解数据预处理与特征工程的基本概念,以及它们在实际应用场景中的重要性。数据预处理数据预处理是机器学习中的第一步,它的主要目的是将原始数据转换成适合进行机器学习模型训练的形式。就像我们在做饭之前需要清洗和准备食
- 计算机系毕业生的前途在哪(一个牛人对计算机系的阐述)
蚊子
嵌入式嵌入式操作系统wincelinux手机游戏j2me
值得未毕业的、刚毕业的、或想转行的朋友们揣摩参考。一、关于企业计算方向企业计算(EnterpriseComputing)是稍时髦较好听的名词,主要是指企业信息系统如:ERP软件(企业资源规划)、CRM软件(客户关系管理)、SCM软件(供应链管理,即物流软件),银行证券软件财务软件电子商务/政务(包括各种网站),数据仓库,数据挖掘,商务智能等企业信息管理系统。企业计算领域对人才的需求显然永远是数量最
- 大学生学软件必看
欧巴Godwin
日志嵌入式嵌入式操作系统wincelinux手机游戏j2me
一、关于企业计算方向企业计算(EnterpriseComputing)是稍时髦较好听的名词,主要是指企业信息系统,如ERP软件(企业资源规划)、CRM软件(客户关系管理)、SCM软件(供应链管理,即物流软件),银行证券软件,财务软件,电子商务/政务(包括各种网站),数据仓库,数据挖掘,商务智能等企业信息管理系统.企业计算领域对人才的需求显然永远是数量最大的,因为这是计算机应用最多的领域.搞这方面的
- 学习笔记(39):结合生活案例,介绍 10 种常见模型
宁儿数据安全
#机器学习学习笔记生活
学习笔记(39):结合生活案例,介绍10种常见模型线性回归只是机器学习的“冰山一角”!根据不同的任务场景(分类、回归、聚类等),还有许多强大的模型可以选择。下面我用最通俗易懂的语言,结合生活案例,介绍10种常见模型及其适用场景:一、回归模型(预测连续值,如房价)1.决策树(DecisionTree)原理:像玩“20个问题”游戏,通过一系列判断(如“面积是否>100㎡?”“房龄是否0.5就判为“会”
- LLM系统性学习完全指南(初学者必看系列)
GA琥珀
LLM学习人工智能语言模型
前言这篇文章将系统性的讲解LLM(LargeLanguageModels,LLM)的知识和应用。我们将从支撑整个领域的数学与机器学习基石出发,逐步剖析自然语言处理(NLP)的经典范式,深入探究引发革命的Transformer架构,并按时间顺序追溯从BERT、GPT-2到GPT-4、Llama及Gemini等里程碑式模型的演进。随后,我们将探讨如何将这些强大的基础模型转化为实用、安全的应用,涵盖对齐
- python automl_自动化的机器学习(AutoML):将AutoML部署到云中
编辑推荐:在本文中,将介绍一种AutoML设置,使用Python、Flask在云中训练和部署管道;以及两个可自动完成特征工程和模型构建的AutoML框架。本文来自于搜狐网,由火龙果软件Alice编辑、推荐。AutoML到底是什么?AutoML是一个很宽泛的术语,理论上来说,它囊括从数据探索到模型构建这一完整的数据科学循环周期。但是,我发现这个术语更多时候是指自动的特征预处理和选择、模型算法选择和超
- python--自动化的机器学习(AutoML)
Q_ytsup5681
python自动化机器学习
自动化机器学习(AutoML)是一种将自动化技术应用于机器学习模型开发流程的方法,旨在简化或去除需要专业知识的复杂步骤,让非专家用户也能轻松创建和部署机器学习模型**[^3^]。具体介绍如下:1.自动化的概念:自动化是指使设备在无人或少量人参与的情况下完成一系列任务的过程。这一概念随着电子计算机的发明和发展而不断进化,从最初的物理机械到后来的数字程序控制,再到现在的人工智能和机器学习,自动化已经渗
- 最新1区9+非肿瘤纯生信,逻辑清晰易懂,机器学习筛选关键基因的纯生信也可以发高水平期刊,抓紧上车!
生信小课堂
影响因子:9.186关于非肿瘤生信,我们也解读过很多,主要有以下类型1单个疾病WGCNA+PPI分析筛选hub基因2单个疾病结合免疫浸润,热点基因集,机器学习算法等。3两种相关疾病联合分析,包括非肿瘤结合非肿瘤,非肿瘤结合肿瘤或者非肿瘤结合泛癌分析4基于分型的非肿瘤生信分析5单细胞结合普通转录组生信分析目前非肿瘤生信发文的门槛较低,欢迎大家!研究概述:本研究首先使用R语言在三个基因表达数据集中找到
- 深入TA-Lib:量化技术指标详解
深入TA-Lib:量化技术指标详解本文系统讲解TA-Lib技术指标分析,涵盖基础、数据处理、趋势与动量指标、均量线、布林线等,并结合Python代码与大数据、机器学习实战案例,助力读者掌握量化交易实战技巧。本文系统梳理了TA-Lib技术指标分析的核心内容,包括TA-Lib基础、数据处理、趋势与动量指标、均量线、布林线等关键技术指标分析方法,并结合Python代码示例与大数据、机器学习的融合实战案例
- AI 人工智能与 Copilot 的融合发展策略
AI天才研究院
AI人工智能与大数据人工智能copilotai
AI人工智能与Copilot的融合发展策略关键词:人工智能、Copilot、代码生成、人机协作、机器学习、自然语言处理、软件开发摘要:本文探讨了人工智能与Copilot技术的融合发展策略。我们将从技术原理、实现方法、应用场景等多个维度深入分析,提出一套完整的融合框架和发展路径。文章首先介绍背景和核心概念,然后详细讲解关键技术,包括自然语言处理、代码生成算法等,接着通过实际案例展示应用效果,最后讨论
- #Datawhale组队学习#7月-强化学习Task1
fzyz123
Datawhale组队学习强化学习人工智能AI
这里是Datawhale组织的组队学习《强化学习入门202507》,Datawhale是一个开源的社区。第一章绪论1.1为什么要学习强化学习?强化学习(ReinforcementLearning,RL)是机器学习中专注于智能体(Agent)如何通过与环境交互学习最优决策策略的分支。与监督学习依赖静态数据集、无监督学习聚焦数据内在结构不同,强化学习的核心在于序贯决策:智能体通过试错探索环境,根据行动
- 微算法科技技术突破:用于前馈神经网络的量子算法技术助力神经网络变革
MicroTech2025
量子计算算法神经网络
随着量子计算和机器学习的迅猛发展,企业界正逐步迈向融合这两大领域的新时代。在这一背景下,微算法科技(NASDAQ:MLGO)成功研发出一套用于前馈神经网络的量子算法,突破了传统神经网络在训练和评估中的性能瓶颈。这一创新性的量子算法以经典的前馈和反向传播算法为基础,借助量子计算的强大算力,极大提升了网络训练和评估效率,并带来了对过拟合的天然抗性。前馈神经网络是深度学习的核心架构,广泛应用于图像分类、
- 图机器学习(13)——图相似性检测
图机器学习(13)——图相似性检测0.前言1.基于图嵌入的方法2.基于图核的方法3.基于GNN的方法4.应用0.前言图机器学习(machinelearning,ML)方法能广泛应用于各类任务,其应用场景涵盖从药物设计到社交网络推荐系统等多个领域。值得注意的是,由于这类方法在设计上具有通用性,同一算法可用于解决不同问题。学习图之间相似性的定量度量是一个关键问题。事实上,这是网络分析的重要步骤,同时也
- Java 大视界 -- Java 大数据机器学习模型在金融市场情绪指数构建与投资决策支持中的应用(339)
青云交
大数据新视界Java大视界java大数据机器学习金融情绪指数投资决策量化策略情绪分析
Java大视界--Java大数据机器学习模型在金融市场情绪指数构建与投资决策支持中的应用(339)引言:正文:一、Java构建的金融市场情绪数据采集与预处理体系1.1多源异构数据接入引擎1.2数据采集延迟测试报告1.3情绪数据预处理管道二、Java驱动的金融市场情绪指数构建模型2.1多维度情绪指数计算框架2.2情绪指数与投资决策的映射模型三、Java在金融投资决策支持中的实战应用3.1量化私募情绪
- 基于Python的健身数据分析工具的搭建流程day1
weixin_45677320
python开发语言数据挖掘爬虫
基于Python的健身数据分析工具的搭建流程分数据挖掘、数据存储和数据分析三个步骤。本文主要介绍利用Python实现健身数据分析工具的数据挖掘部分。第一步:加载库加载本文需要的库,如下代码所示。若库未安装,请按照python如何安装各种库(保姆级教程)_python安装库-CSDN博客https://blog.csdn.net/aobulaien001/article/details/133298
- LangChain中的向量数据库接口-Weaviate
洪城叮当
langchain数据库经验分享笔记交互人工智能知识图谱
文章目录前言一、原型定义二、代码解析1、add_texts方法1.1、应用样例2、from_texts方法2.1、应用样例3、similarity_search方法3.1、应用样例三、项目应用1、安装依赖2、引入依赖3、创建对象4、添加数据5、查询数据总结前言 Weaviate是一个开源的向量数据库,支持存储来自各类机器学习模型的数据对象和向量嵌入,并能无缝扩展至数十亿数据对象。它提供存储文档嵌
- Python的科学计算库NumPy(一)
linlin_1998
pythonnumpy开发语言
NumPy(NumericalPython)是Python中最基础、最重要的科学计算库之一,提供了高性能的多维数组(ndarray)对象和大量数学函数,是许多数据科学、机器学习库(如Pandas、SciPy、TensorFlow等)的基础依赖。1.创建一个numpy里面的一维数组importnumpyasnp###通过array方法创建一个ndarrayarray1=np.array([1,2,3
- 微算法科技的前沿探索:量子机器学习算法在视觉任务中的革新应用
MicroTech2025
量子计算算法
在信息技术飞速发展的今天,计算机视觉作为人工智能领域的重要分支,正逐步渗透到我们生活的方方面面。从自动驾驶到人脸识别,从医疗影像分析到安防监控,计算机视觉技术展现了巨大的应用潜力。然而,随着视觉任务复杂度的不断提升,传统机器学习算法在处理大规模、高维度数据时遇到了计算瓶颈。在此背景下,量子计算作为一种颠覆性的计算模式,以其独特的并行处理能力和指数级增长的计算空间,为解决这一难题提供了新的思路。微算
- 在mac m1基于llama.cpp运行deepseek
lama.cpp是一个高效的机器学习推理库,目标是在各种硬件上实现LLM推断,保持最小设置和最先进性能。llama.cpp支持1.5位、2位、3位、4位、5位、6位和8位整数量化,通过ARMNEON、Accelerate和Metal支持Apple芯片,使得在MACM1处理器上运行Deepseek大模型成为可能。1下载llama.cppgitclonehttps://github.com/ggerg
- 图神经网络:挖掘关系数据中的宝藏
图神经网络:挖掘关系数据中的宝藏在浩瀚的数据海洋中,蕴藏着一类特殊而强大的资源——关系数据。它们不是孤立的点,而是相互连接、彼此影响的复杂网络:社交平台上朋友的朋友、电商系统中商品与用户的互动、蛋白质分子内原子的结合、城市交通网中的道路连接……这些数据天然以图的形式存在,节点代表实体,边则承载着实体间千丝万缕的关系。传统的数据挖掘工具面对这些盘根错节的结构往往力不从心,而图神经网络(GNN)的崛起
- 【机器学习笔记Ⅰ】9 特征缩放
巴伦是只猫
机器学习机器学习笔记人工智能
特征缩放(FeatureScaling)详解特征缩放是机器学习数据预处理的关键步骤,旨在将不同特征的数值范围统一到相近的尺度,从而加速模型训练、提升性能并避免某些特征主导模型。1.为什么需要特征缩放?(1)问题背景量纲不一致:例如:特征1:年龄(范围0-100)特征2:收入(范围0-1,000,000)梯度下降的困境:量纲大的特征(如收入)会导致梯度更新方向偏离最优路径,收敛缓慢。量纲小的特征(如
- 深度学习实战-使用TensorFlow与Keras构建智能模型
程序员Gloria
Python超入门TensorFlowpython
深度学习实战-使用TensorFlow与Keras构建智能模型深度学习已经成为现代人工智能的重要组成部分,而Python则是实现深度学习的主要编程语言之一。本文将探讨如何使用TensorFlow和Keras构建深度学习模型,包括必要的代码实例和详细的解析。1.深度学习简介深度学习是机器学习的一个分支,使用多层神经网络来学习和表示数据中的复杂模式。其广泛应用于图像识别、自然语言处理、推荐系统等领域。
- 【大模型与机器学习解惑】什么是A/B测试,为何进行A/B测试?
以下内容将围绕机器学习中的A/B测试展开,从概念与背景到实施细节、示例代码、优化思路和未来建议,并在最后给出一个整体的“输出目录”供参考。目录什么是机器学习的A/B测试为何要进行A/B测试A/B测试的实施流程示例代码与详细解释优化方向与未来建议结语1.什么是机器学习的A/B测试A/B测试(也常被称作对照试验、SplitTest)最早多用于互联网产品的功能或界面迭代中,指的是将用户或样本随机分为两组
- 详解LLMOps,将DevOps用于大语言模型开发
大家好,在机器学习领域,随着技术的不断发展,将大型语言模型(LLMs)集成到商业产品中已成为一种趋势,同时也带来了许多挑战。为了有效应对这些挑战,数据科学家们转向了一种新型的DevOps实践LLM-OPS,专为大型语言模型的开发和维护而设计。本文将介绍LLM-OPS的核心思想,并分析这一策略如何帮助数据科学家更高效地运用DevOps的优秀实践,从而在语言模型的开发和部署过程中,提升工作效率和成果的
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc