- AI大模型部署:Ollama与vLLM部署对比:哪个更合适?
大模型部署
langchain人工智能dockerllamaLLM程序员Ollama
前言近年来,大语言模型(LLM)的应用日益广泛,而高效的部署方案至关重要。Ollama和vLLM作为两种流行的LLM部署工具,各有优劣。本文将深入比较Ollama和vLLM的部署方式,帮助选择最合适的方案。Ollama:简单易用的LLM部署工具Ollama以其简洁的安装和易于使用的特性而闻名。其官方文档清晰易懂,即使是新手也能快速上手。Ollama支持多种LLM模型,并提供便捷的命令行界面进行管理
- 国产大模型 DeepSeek,能跟 ChatGPT 一战,还不用梯子,确定不试试?
集成显卡
AI/人工智能chatgpt
深度求索公司最新推出的自研MoE模型DeepSeek-V3,多项评测成绩超越了Qwen2.5-72B和Llama-3.1-405B等其他开源模型,并在性能上和世界顶尖的闭源模型GPT-4o以及Claude-3.5-Sonnet不分伯仲我尝试了下,同样的编码场景,通义千问给出的答案没有实际帮助,但是DeekSeek却告之具体的实现步骤与依据,一大利器呀!其效果跟ChatGPT比都不遑多让,关键是国内
- OpenAI 实战进阶教程 - 第1节:OpenAI API 架构与基础调用
山海青风
人工智能人工智能pythonprompt
目标掌握OpenAIAPI的基础调用方法。理解如何通过API进行内容生成。使用实际应用场景帮助零基础读者理解API的基本用法。一、什么是OpenAIAPI?OpenAIAPI是一种工具,允许开发者通过编程方式与OpenAI的强大语言模型(例如gpt-3.5-turbo和gpt-4)进行交互。简单来说,它就像一个“AI助手”,可以回答问题、生成文本、总结信息等。实际应用场景举例:**客户支持自动化:
- o1、GPT4、GPT4o 这三个有什么区别?
开心的AI频道
人工智能
核心观点:GPT-4擅长文本处理和推理,GPT-4o主打多模态交互,而O1则专注于深度推理和逻辑分析,三者各有侧重,应用场景也大不相同。截至2024年12月,OpenAI已发布13个模型,模型能力已从最初的文本处理拓展到写作、编程、多模态和推理等,实现了从“文科生”到“全科学霸”的飞跃。然而,在众多模型中,GPT-4、GPT-4o和O1三款模型可谓是经典与转型之“模”。GPT-4作为ChatGPT
- 根据每月流量和市场份额排名前20 的AI工具列表
开心的AI频道
人工智能
ChatGPT:由OpenAI研发,是一款对话式大型语言模型。它能够理解自然语言输入,生成连贯且符合逻辑的回复。可用于文本创作,如撰写文章、故事、诗歌;还能解答各种领域的知识问题,提供翻译、代码解释等服务,在多种场景下辅助用户解决语言相关需求。Canva:作为在线图形设计平台,拥有海量的模板资源,涵盖海报、名片、社交媒体帖子、演示文稿等多种类型。用户无需专业设计技能,通过简单的拖放操作即可使用其丰
- DeepSeek 使用的核心技术预测
eso1983
人工智能深度学习机器学习python
最近DeepSeek这个词算是火遍了整个AI圈,这个影响力迅速超过ChatGPT的产品,都会使用哪些技术来做支撑呢。我这里简单做了一下梳理,结果不一定会完全准确,但是对这类产品的技术架构有个大概的认识。以下是我对可能涉及的技术架构的梳理,希望大家踊跃参与评论。1.大规模预训练模型架构Transformer变种与优化:基于Transformer架构进行改进,可能引入稀疏注意力机制(如Longform
- Unity接入Minimax语音模型, 将mp3转化成AudioClip
NuageL
虚拟恋人unity游戏引擎ai
我不会Unity,但是看到b站一位大佬做的虚拟恋人,于是想做一下伸手党。大佬视频:【chatGPT+unity+Azure+VRoid】AI女友对话,源码分享,零基础手搓二次元妹子,打造专属的AI女友不是梦_哔哩哔哩_bilibili语音合成部分,大佬已经集成了很多百度云语音api,但是因为本人很菜,设备也不太好,所以用本地大模型感觉暂时有点困难(之后想继续学习)不过百度云语音的声音有点难听,所以
- 什么是LLM?看这一篇就够了!
Python程序员罗宾
人工智能语言模型AIGC自然语言处理
前言自从2022年12月ChatGPT横空面世以来,AI领域获得了十足的关注和资本,其实AI的概念在早些年也火过一波,本轮AI热潮相比于之前的AI,最大的区别在于:生成式。本文主要介绍大语言模型(LargeLanguageModel,简称LLM)。大语言模型介绍什么是大语言模型(LLM)通过海量文本训练的、能识别人类语言、执行语言类任务、拥有大量参数的模型,称之为大语言模型。GPT、LLaMA、M
- 【llm对话系统】大模型 Llama 源码分析之并行训练方案
kakaZhui
llama人工智能AIGCchatgpt
1.引言训练大型语言模型(LLM)需要巨大的计算资源和内存。为了高效地训练这些模型,我们需要采用各种并行策略,将计算和数据分布到多个GPU或设备上。Llama作为当前最流行的开源大模型之一,其训练代码中采用了多种并行技术。本文将深入Llama的训练代码,分析其并行训练方案,主要关注参数并行和部分结构参数共享。2.并行训练策略概述常见的并行训练策略包括:数据并行(DataParallelism,DP
- 【llm对话系统】大模型 Llama 源码分析之 Flash Attention
kakaZhui
llama人工智能AIGCchatgpt
1.写在前面近年来,基于Transformer架构的大型语言模型(LLM)在自然语言处理(NLP)领域取得了巨大的成功。Transformer的核心组件是自注意力(Self-Attention)机制,它允许模型捕捉输入序列中不同位置之间的关系。然而,标准的自注意力机制的计算复杂度与序列长度的平方成正比,这使得它在处理长序列时效率低下。为了解决这个问题,FlashAttention被提出,它是一种高
- 使用Elasticsearch和SelfQueryRetriever实现智能电影检索
hgSdaegva
elasticsearchjenkins大数据python
在当今信息爆炸的时代,快速而准确地检索数据变得尤为重要。Elasticsearch是一个强大的分布式搜索和分析引擎,能够高效地处理大量数据。在这篇文章中,我们将结合Elasticsearch和SelfQueryRetriever,展示如何通过语言模型实现智能电影查询。技术背景介绍Elasticsearch提供多租户能力和无模式的JSON文档存储,广泛应用于全文搜索和分析场景。通过将其与语言模型结合
- 使用 ChatPremAI 和 LangChain 构建高级聊天模型功能
hgSdaegva
python
##使用ChatPremAI和LangChain构建高级聊天模型功能###技术背景介绍随着生成式AI的快速发展,诸如ChatGPT等大型语言模型逐渐成为开发智能应用的核心组件。然而,如何高效利用这些模型,并将其部署到生产环境中,仍然是开发者面临的一大挑战。ChatPremAI是一款整合所有核心功能的生成式AI平台,通过与LangChain的完美结合,为开发者提供了灵活且功能强大的接口以实现复杂功能
- llama.cpp LLM_CHAT_TEMPLATE_DEEPSEEK_3
Yongqiang Cheng
ggml-llama.cpp-whisper.cppllama.cppDEEPSEEK_3
llama.cppLLM_CHAT_TEMPLATE_DEEPSEEK_31.`LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM`2.`staticconststd::mapLLM_CHAT_TEMPLATES`3.`LLM_CHAT_TEMPLATE_DEEPSEEK_3`References不宜吹捧中国大语言模型的同时,又去贬低美国大语言模型。水是人体的主要化学成分,约占体
- 【自然语言处理(NLP)】基于Transformer架构的预训练语言模型:BERT 训练之数据集处理、训练代码实现
道友老李
自然语言处理(NLP)自然语言处理transformer
文章目录介绍BERT训练之数据集处理BERT原理及模型代码实现数据集处理导包加载数据生成下一句预测任务的数据从段落中获取nsp数据生成遮蔽语言模型任务的数据从token中获取mlm数据将文本转换为预训练数据集创建Dataset加载WikiText-2数据集BERT训练代码实现导包加载数据构建BERT模型模型损失训练获取BERT编码器个人主页:道友老李欢迎加入社区:道友老李的学习社区介绍**自然语言
- 向量语义(Vector Semantics)与表征学习(Representation Learning)详解
苏西月
学习人工智能
1.向量语义(VectorSemantics)与词嵌入(WordEmbeddings)向量语义的核心思想是用数学向量来表示单词的意义。传统的NLP方法(如基于规则的语言模型)需要人为定义单词的语义规则,而向量语义方法则通过分析单词在大量文本中的使用模式来学习其语义。关键词:词向量(WordRepresentations):单词被表示为一个多维向量,每个维度对应于该单词的某种语义特征。分布式表示(D
- 【llm对话系统】大模型 Llama、Qwen 和 ChatGLM 的网络结构和训练方法对比
kakaZhui
llama人工智能AIGCchatgptpython
1.引言近年来,大型语言模型(LLM)取得了令人瞩目的进展,其中Llama、Qwen和ChatGLM是三个备受关注的开源模型。它们都在Transformer架构的基础上进行了改进和优化,并在各种NLP任务上取得了优异的性能。本文将深入分析Llama、Qwen和ChatGLM的网络结构和训练方法,比较它们的异同以及各自的优势。2.模型结构对比特性LlamaQwenChatGLM基础架构Decoder
- ChatGPT的150个角色提示场景实测(13)健身教练
earthzhang2021
chatgpt开发语言人工智能自然语言处理产品经理
我希望你能充当私人教练。我将为你提供一个希望通过体能训练变得更健康、更强壮、更健康的人所需要的所有信息,而你的职责是根据这个人目前的体能水平、目标和生活习惯,为其制定最佳计划。你应该运用你的运动科学知识、营养建议和其他相关因素,以便制定出适合他们的计划。我的请求是:请为下面的学员制定适合的计划,身高183,体重70kg,年龄22岁,请一步一步来。=====================当然,我可
- LLM的实时性:迈向毫秒级响应的AI
AI大模型应用之禅
AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
LargeLanguageModel(LLM),实时性,响应时间,微服务架构,并行处理,知识图谱,优化算法,延迟最小化1.背景介绍大型语言模型(LLM)在自然语言处理领域取得了令人瞩目的成就,展现出强大的文本生成、翻译、摘要和问答能力。然而,现有的LLM模型通常面临着响应时间较慢的问题,这限制了其在实时应用场景中的应用。例如,在聊天机器人、实时翻译和智能客服等领域,用户期望能够获得即时响应,而传统
- chatgpt赋能python:如何配置Python中的NumPy?
yakuchrisfor
ChatGptchatgptpythonnumpy计算机
如何配置Python中的NumPy?如果您是一名Python程序员,那么您可能已经听说过NumPy。NumPy是一个强大的Python库,可用于处理大型多维数组和矩阵,以及用于数值计算和科学计算。因此,NumPy是数据科学中的黄金库,而它的安装是Python编程环境必不可少的一部分。什么是NumPy?NumPy是Python语言的一个扩展程序库,它支持大量的高级数学函数,以及可以高效地操作大型数组
- Aligner:自动修正AI的生成结果,北大推出残差修正模型对齐技术
蚝油菜花
每日AI项目与应用实例人工智能人工智能开源
❤️如果你也关注AI的发展现状,且对AI应用开发非常感兴趣,我会每日分享大模型与AI领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!微信公众号|搜一搜:蚝油菜花快速阅读技术背景:Aligner是北京大学团队提出的大语言模型对齐技术,通过学习对齐答案与未对齐答案之间的修正残差来提升模型性能。核心优势:作为即插即用的模块,可以直接应用于各种开源和基于API的模型
- 大语言模型丨ChatGPT-4o深度科研应用、论文与项目撰写、数据分析、机器学习、深度学习及AI绘图(BP神经网络、支持向量机、决策树、随机森林、变量降维与特征选择、群优化算法等)
赵钰老师
ChatGPTpython人工智能语言模型深度学习数据分析chatgpt机器学习随机森林
目录第一章、2024大语言模型最新进展与ChatGPT各模型第二章、ChatGPT-4o提示词使用方法与高级技巧(最新加入思维链及逆向工程及GPTs)第三章、ChatGPT4-4o助力日常生活、学习与工作第四章、基于ChatGPT-4o课题申报、论文选题及实验方案设计第五章、基于ChatGPT-4o信息检索、总结分析、论文写作与投稿、专利idea构思与交底书的撰写第六章、ChatGPT-4o编程入
- 揭秘大语言模型:什么是LLM大模型?
AGI-杠哥
程序人生兼职副业web安全语言模型人工智能自然语言处理
前言自从去年chatgpt横空出世以来,它火爆也让大语言模型这个词变的很流行,到底什么是大语言模型,今天从初学者的角度介绍一下大语言模型的基本概念、组成部分和基本工作流程等。下面的介绍中如果涉及到一些专业术语不太理解,也没关系,只要有一个感性认识即可,毕竟我们不打算造车,只要做到自己部署开源大模型的时候,不至于脸盲就可以了。一、大语言模型特点和基本组成大语言模型(LargeLanguageMode
- 【AI知识点】三种不同架构的大语言模型(LLMs)的区别
AI完全体
AI知识点人工智能语言模型自然语言处理机器学习深度学习注意力机制自注意力机制
【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】在自然语言处理(NLP)中,预训练语言模型(LLMs,LargeLanguageModels)通常基于不同的架构,如仅编码器的模型(Encoder-only)、编码器-解码器的模型(Encoder-Decoder),以及仅解码器的模型(Decoder-only)。这三种架构有着显著的区别,主要体现在功能、适用任务和性能上。下面从架构、功能
- 大模型开发流程及架构
寒夜灬星辰
人工智能语言模型
一、主要内容●以大语言模型为功能核心●利用大语言模型的强大理解能力和生成能力●结合特殊的数据或业务逻辑来提供独特功能的应用二、明确目标●大模型作为一个调用工具,不需要知道太多的原理,不需要优化模型能力●需要掌握PromptEngineering、数据处理方法、业务逻辑分解等手段来充分发挥大模型能力,适配应用任务三、大模型开发与传统开发的区别(一)传统开发将非常复杂的业务拆解成小任务,每个任务构造训
- 大模型开发流程及项目实战
辣椒种子
机器学习人工智能
一、大模型开发整理流程1.1、什么是大模型开发我们将开发以大语言模型为功能核心、通过大语言模型的强大理解能力和生成能力、结合特殊的数据或业务逻辑来提供独特功能的应用称为大模型开发。开发大模型相关应用,其技术核心点虽然在大语言模型上,但一般通过调用API或开源模型来实现核心的理解与生成,通过PromptEnginnering来实现大语言模型的控制,因此,虽然大模型是深度学习领域的集大成之作,大模型开
- Meta首席科学家Yann LeCun预言:5年内AI架构将颠覆,当前大模型的4大核心缺陷
机器小乙
人工智能
✨引言:一场颠覆AI行业的预言在2025冬季达沃斯“技术辩论”现场,Meta首席AI科学家、图灵奖得主杨立昆(YannLeCun)抛出一个震撼观点:“当前的大语言模型(LLM)范式将在3-5年内被淘汰。”这位深度学习先驱的论断,不仅直指ChatGPT等明星产品的技术天花板,更揭示了下一代AI进化的核心路径——构建理解物理世界的“世界模型”(WorldModel)。作为Meta人工智能实验室负责人,
- 【AI人工智能】DeepSeek R1:你需要知道的一切
大名顶顶
人工智能人工智能AIDeepSeek程序员计算机编程开源
我们将在本博客中介绍的关于DeepSeekR1的所有你需要知道的一切内容,请坚持认真读完,必有收获:DeepSeekR1简要概述主要特点与能力开源与可访问性模型架构强化学习训练变体与精简模型使用案例与应用从专有模型迁移到开源模型1.DeepSeekR1简要概述大语言模型(LLM)研究领域正在迅速发展,每一个新模型都在推动机器能力的边界。DeepSeekR1是由DeepSeek于2025年1月20日
- 深入探索Llama.cpp:在LangChain中使用llama-cpp-python
dfvcbipanjr
pythonllamalangchain
深入探索Llama.cpp:在LangChain中使用llama-cpp-python随着大语言模型(LLMs)的普及,开发者需要更有效的方法来部署和使用这些模型。本文将介绍如何使用Llama.cpp的Python绑定——llama-cpp-python,并展示如何在LangChain中实现此功能。1.引言llama-cpp-python是Llama.cpp的Python绑定,使开发者能够在本地运
- DeepSeek R1 简易指南:架构、培训、本地部署和硬件要求
前端javascript
CSS技巧与案例详解vue2与vue3技巧合集VueUse源码解读DeepSeek团队近期发布的DeepSeek-R1技术论文展示了其在增强大语言模型推理能力方面的创新实践。该研究突破性地采用强化学习(ReinforcementLearning)作为核心训练范式,在不依赖大规模监督微调的前提下显著提升了模型的复杂问题求解能力。技术架构深度解析模型体系:DeepSeek-R1系列包含两大核心成员:D
- 使用Ollama本地化部署DeepSeek
大模型llm人工智能
1、Ollama简介Ollama是一个开源的本地化大模型部署工具,旨在简化大型语言模型(LLM)的安装、运行和管理。它支持多种模型架构,并提供与OpenAI兼容的API接口,适合开发者和企业快速搭建私有化AI服务。Ollama的主要特点包括:轻量化部署:支持在本地设备上运行模型,无需依赖云端服务。多模型支持:兼容多种开源模型,如LLaMA、DeepSeek等。高效管理:提供命令行工具,方便用户下载
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>