- 机器学习学习笔记(十七)—— 优化算法概述
lancetop-stardrms
机器学习机器学习
一、概观scipy中的optimize子包中提供了常用的最优化算法函数实现。我们可以直接调用这些函数完成我们的优化问题。optimize中函数最典型的特点就是能够从函数名称上看出是使用了什么算法。下面optimize包中函数的概览:1.非线性最优化fmin--简单Nelder-Mead算法fmin_powell--改进型Powell法fmin_bfgs--拟Newton法fmin_cg--非线性共
- 机器学习和深度学习有什么区别?
facaixxx2024
AI大模型机器学习深度学习人工智能
深度学习和机器学习有什么区别?深度学习是机器学习一个分支,机器学习包含深度学习。下面阿小云从定义、技术、数据需求、应用领域、模型复杂度和计算资源多维度来对比深度学习和机器学习的区别:二者的定义区别机器学习:是一种数据分析技术,通过算法使计算机能够在无明确编程的情况下进行学习和决策。深度学习:是机器学习的一个子领域,使用神经网络模型,尤其是深层神经网络模型,来处理、解释和分类数据。依赖算法和技术不同
- AI趋势下,软件测试工程师怎么拥抱AI
悠然的笔记本
人工智能
在AI趋势下,软件测试工程师怎么拥抱AI呢?以下是我的一些思考:一、掌握AI基础知识软件测试工程师需要学习机器学习、深度学习、自然语言处理等领域的基本原理和算法。这些基础知识有助于理解AI在测试中的应用基础,从而能够更好地利用AI技术提升测试效率和质量。二、掌握AI相关工具和技术编程语言:学习使用Python等编程语言,这是实现AI应用的常用工具之一。框架:掌握TensorFlow、PyTorch
- 什么是机器学习?
CM莫问
机器学习模型机器学习人工智能算法
一、概念(维基百科)机器学习是人工智能的一个分支。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。二、主要特点机器学习的主要特点包括:1、数据驱动:机器学习模型的性能主要依赖于输入的数据。数据的质量和数量直接影响模型的准确性和泛化能力,所谓“Garbagein,garbag
- 机器学习,我们主要学习什么?
悠然的笔记本
机器学习机器学习
机器学习的发展历程机器学习的发展历程,大致分为以下几个阶段:1.起源与早期探索(20世纪40年代-60年代)1949年:Hebb提出了基于神经心理学的学习机制,开启了机器学习的先河1950年代:机器学习的起源与人工智能的探索紧密相连。例如,1956年,达特茅斯会议标志着人工智能的诞生,机器学习作为其重要分支也开始受到关注1960年代:出现了早期的机器学习算法,如1967年诞生的K最近邻算法(KNN
- 多目标应用:基于自组织分群的多目标粒子群优化算法(SS-MOPSO)的移动机器人路径规划研究(提供MATLAB代码)
IT猿手
机器人路径规划多目标优化算法多目标应用前端多目标算法人工智能matlab算法路径规划
一、机器人路径规划介绍移动机器人(Mobilerobot,MR)的路径规划是移动机器人研究的重要分支之,是对其进行控制的基础。根据环境信息的已知程度不同,路径规划分为基于环境信息已知的全局路径规划和基于环境信息未知或局部已知的局部路径规划。随着科技的快速发展以及机器人的大量应用,人们对机器人的要求也越来越高,尤其表现在对机器人的智能化方面的要求,而机器人自主路径规划是实现机器人智能化的重要步骤,路
- 非支配性排序遗传算法 III---NSGA-III-可用于(多目标模型融合/特征选择与降维/图像多目标优化处理)
ww18000
r语言开发语言数据挖掘机器学习
非支配性排序遗传算法III(NSGA-III)是用于求解多目标优化问题的一种进化算法1。以下是对它的具体介绍1:具体完整算法请跳转:非支配性排序遗传算法III---NSGA-III-可用于(多目标模型融合/特征选择与降维/图像多目标优化处理)发展背景NSGA-III由KalyanmoyDeb和HarshitJain提出,是在NSGA-II的基础上进行改进和扩展,以更好地处理多目标优化问题,尤其是在
- 数据结构——排序(交换排序)
c++
目录一、交换排序的总体概念二、冒泡排序三、快速排序1.挖坑法2.左右指针3.前后指针一、交换排序的总体概念交换排序是一类排序算法,它的核心思想是通过交换元素的位置来达到排序的目的。在排序过程中,比较数组中的元素对,如果它们的顺序不符合排序要求,就交换它们的位置。在这里主要讲冒泡排序和快速排序。二、冒泡排序基本概念:冒泡排序是一种简单的交换排序算法。它的基本思想是通过反复比较相邻的元素,根据排序要求
- 负载均衡算法分类以及它们的优缺点
xiaobai166
负载均衡
负载均衡算法分类任务平分类:负载均衡系统将收到的任务平均分配给服务器进行处理,这里的“平均”可以是绝对数量的平均,也可以是比例或者权重上的平均。负载均衡类:负载均衡系统根据服务器的负载来进行分配,这里的负载并不一定是通常意义上我们说的“CPU负载”,而是系统当前的压力,可以用CPU负载来衡量,也可以用连接数、I/O使用率、网卡吞吐量等来衡量系统的压力。性能最优类:负载均衡系统根据服务器的响应时间来
- 使用Python实现量子电路模拟:走进量子计算的世界
Echo_Wish
Python进阶量子计算python开发语言
量子计算作为一项前沿科技,因其能够解决经典计算无法应对的复杂问题而备受关注。通过量子电路模拟,我们可以在经典计算机上模拟量子计算过程,从而进行量子算法的研究和验证。Python作为一种强大且易用的编程语言,为量子电路模拟提供了丰富的库和工具。本文将详细介绍如何使用Python实现量子电路模拟,涵盖环境配置、依赖安装、量子电路构建、模拟与测量和实际应用案例等内容。项目概述本项目旨在使用Python构
- 《数据结构基础操作:从代码层面深入剖析链表、栈与队列》
Oracle_666
数据结构
引言在计算机编程的世界里,数据结构是构建高效算法和程序的核心要素。链表、栈和队列作为基础且重要的数据结构,广泛应用于各种软件开发场景中。本文将结合具体代码,详细解读双向链表的插入与删除、顺序栈和循环队列的基本操作、链表合并以及删除链表倒数第N个节点的实现逻辑和代码细节。1.双向链表插入与删除操作的代码实现1.1.双向链表节点结构定义//定义双向链表节点结构//双向链表的每个节点包含三部分:数据域、
- 算法基础 -- 区间和
CyberXavier
数据结构算法基础算法
区间和假定有一个无限长的数轴,数轴上每个坐标上的数都是0。现在,我们首先进行n次操作,每次操作将某一位置x上的数加c。接下来,进行m次询问,每个询问包含两个整数l和r,你需要求出在区间[l,r]之间的所有数的和。输入格式第一行包含两个整数n和m。接下来n行,每行包含两个整数x和c。再接下来m行,每行包含两个整数l和r。输出格式共m行,每行输出一个询问中所求的区间内数字和。数据范围−10^9≤x≤1
- 基于量子旋转门的量子粒子群算法:突破粒子群算法局限的高效优化方法
m0_57781768
算法量子计算
基于量子旋转门的量子粒子群算法:突破粒子群算法局限的高效优化方法在现代优化算法中,粒子群算法(PSO)因其简单易实现且高效的特点而被广泛应用。然而,传统粒子群算法在处理复杂优化问题时,常常会陷入局部最优解,无法找到全局最优解。为了解决这一问题,研究人员提出了一种基于量子旋转门的量子粒子群算法(QPSO),通过引入量子计算的思想和技术,有效地克服了传统PSO的局限性。本文将详细介绍量子粒子群算法的基
- 链表经典应用(一)
一只冯冯
手搓数据结构课程代码算法c++数据结构c语言后端
链表相关算法结构体交叉合并(带头结点)求链表的中间结点(快慢指针法)逆置单链表(带头结点)判断回文链表(带头结点):取中间结点+逆置+比对判断环形链表(快慢指针法)判断相交链表,返回相交结点结构体typedefstructLNode{intdata;structLNode*next;}LNode,*LinkList;交叉合并(带头结点)//交叉合并(带头结点)voidMerge(LinkList&
- 深入HBase——核心组件
黄雪超
大数据基础#深入HBasehbase数据库数据结构
引入通过上一篇对HBase核心算法和数据结构的梳理,我们对于其底层设计有了更多理解。现在我们从引入篇里面提到的HBase架构出发,去看看其中不同组件是如何设计与实现。核心组件首先,需要提到的就是HBase架构中会依赖到的Zookeeper和HDFS。对于HDFS看过深入HDFS的小伙伴,应该都不陌生,它提供了高可靠的海量数据存储和读写能力;而对于Zookeeper,它是一个分布式协调存储服务,主要
- C++.CSP.基础算法-前缀和
信奥帮-木心老师
信奥赛C++.基础算法c++算法开发语言
C++.J2.基础算法-前缀和学信奥来csp帮www.cspbang.com(http://www.cspbang.com)1.算法解释前缀和是基础算法之一,它一般应用于快速求出某个连续区间的和。前缀和一般包括一维前缀和,二维前缀和,前缀和算法的时间复杂度是O(1)。2.算法举例原数组:arr[8]={9,3,1,7,5,6,0,8}前缀和数组:qzh[8]={9,12,13,20,25,31,3
- 操作系统中的任务调度算法
沉默的煎蛋
算法分布式css前端tomcatjava开发语言
一、引言在操作系统中,任务调度算法是核心组件之一,它负责合理分配有限的CPU资源,以确保系统的高效运行和良好的用户体验。任务调度的目标是实现公平性、最小化等待时间、提高系统吞吐量,并最大化CPU的利用率。不同的任务调度算法适用于不同的应用场景,操作系统根据系统负载和任务的特性选择最合适的调度策略。本文将介绍几种常见的任务调度算法,分析其优缺点,并通过具体示例展示各算法的调度效果。二、常见任务调度算
- 银行家算法详解:避免死锁的经典解决方案
沉默的煎蛋
算法java数据结构哈希算法散列表
一、引言在多道程序系统中,多个进程可能需要共享有限的资源,如CPU、内存和I/O设备等。如果资源分配不当,可能会导致死锁,进而使得系统无法正常运行。为了避免死锁,操作系统需要采用一些策略来保证资源的安全分配,其中银行家算法(Banker'sAlgorithm)是一种经典的避免死锁的资源分配算法。银行家算法由计算机科学家EdsgerDijkstra提出,它通过模拟银行贷款的发放方式,确保系统始终处于
- CSP-J 算法基础 前缀和与差分
人才程序员
CSP-J算法c++竞赛青少年编程信息竞赛
文章目录前言前缀和差分具体代码实现前缀和计算前缀和保存到一个数组中实现函数计算数组一段的和差分定义差分数组运用差分到需要的数组中总体代码总结前言在计算机科学中,处理数组的区间操作是一个常见的任务。无论是计算子数组的和,还是在数组的某个范围内应用加法操作,传统方法往往效率较低。为了提高处理这些问题的效率,前缀和(PrefixSum)和差分(DifferenceArray)技术被广泛应用。它们不仅能够
- XGBoost vs LightGBM vs CatBoost:三大梯度提升框架深度解析
机器学习司猫白
机器学习理论机器学习xgboostlightgbmcatboost参数调优人工智能
梯度提升树(GradientBoostingDecisionTrees,GBDT)作为机器学习领域的核心算法,在结构化数据建模中始终占据统治地位。本文将深入解析三大主流实现框架:XGBoost、LightGBM和CatBoost,通过原理剖析、参数详解和实战对比,助你全面掌握工业级建模利器。一、算法原理深度对比1.XGBoost:工程优化的奠基者核心创新:二阶泰勒展开:利用损失函数的一阶导和二阶导
- Python应用算法之贪心算法理解和实践
大数据追光猿
算法python贪心算法深度学习开发语言人工智能大数据
一、什么是贪心算法?贪心算法(GreedyAlgorithm)是一种简单而高效的算法设计思想,其核心思想是:在每一步选择中,都采取当前状态下最优的选择(即“局部最优解”),希望通过一系列局部最优解最终达到全局最优解。虽然贪心算法并不总是能得到全局最优解,但在许多问题中,它能够快速找到近似最优解。1.贪心算法的优缺点优点高效性:通常时间复杂度较低,适合解决大规模问题。简单性:实现简单,易于理解和应用
- 《Linux运维总结:基于Ubuntu 22.04+x86_64架构CPU部署etcd 3.5.15二进制分布式集群》
东城绝神
《Linux运维实战总结》linux运维ubuntuetcd
总结:整理不易,如果对你有帮助,可否点赞关注一下?更多详细内容请参考:《Linux运维篇:Linux系统运维指南》一、功能简介1、什么是etcdetcd是一个分布式、可靠的键值存储系统,用于分布式系统中存储关键核心数据。它由CoreOS开发,并且是开源的,授权协议为Apache许可证。etcd内部采用了Raft一致性算法,可以实现配置共享和服务发现。etcd中文文档可参考如下:Etcd中文文档或者
- 动态规划(Dynamic Programming)详解
程序猿000001号
动态规划算法
动态规划(DynamicProgramming)详解目录动态规划简介动态规划核心思想动态规划问题的基本要素动态规划应用步骤经典动态规划问题解析动态规划优化技巧实际应用案例动态规划的优缺点总结与学习资源1.动态规划简介动态规划(DynamicProgramming,DP)是一种解决复杂问题的算法设计范式,通过将原问题分解为相对简单的子问题,并利用子问题之间的关系,避免重复计算,最终高效求解全局最优子
- Day24 第七章 回溯算法part03
TAK_AGI
算法
一.学习文章及资料39.组合总和40.组合总和II131.分割回文串二.学习内容1.组合总和题目特点:1.无重复元素的整数数组candidates2.同一个元素可以重复被选取因为本题没有组合数量要求,仅仅是总和的限制,所以递归没有层数的限制,只要选取的元素总和超过target,就返回!而在77.组合(opensnewwindow)和216.组合总和III(opensnewwindow)中都可以知道
- 数据结构与算法----枚举与模拟
王嘉俊705
算法算法C++数据结构
枚举与模拟基本概念枚举定义:通过系统性地遍历所有可能的候选解,逐一验证是否满足问题条件的算法策略特点:实现简单,但需注意时间复杂度,常通过剪枝优化效率适用场景:解空间有限、问题维度较低(一般循环嵌套不超过3层)与暴力法的关系:是暴力法的具体实现形式,但可通过合理剪枝提升效率模拟定义:按照问题描述的规则逐步实现操作过程的算法策略特点:注重代码实现的细节把控,常需处理边界条件分类:直接模拟:完全按题意
- 计算机视觉CV学习路线
我喝AD钙
我的学习笔记计算机视觉学习人工智能
计算机视觉CV学习路线1.基础准备(可参考mooc学习)2.计算机视觉基础知识(可参考mooc学习、计算机图形学)3.经典计算机视觉算法(可参考吴恩达机器学习课程、国内外计算机图形学课程)4.深度学习基础(参考吴恩达和TF、Keras官网手册)5.深度学习在计算机视觉中的应用(李飞飞课程、arxiv论文原文和解析博客,实战参考gitee/github)6.现代计算机视觉技术(arxiv论文原文和解
- Python调用c#DLL
全烂测试工程师
pythonc#
1.注意区分:c++封装的使用ctypes,c#封装的使用pythonnet2.Python调用c#DLL使用的是pythonnet的clr包,注意python也有独立的clr包,如果使用错了会导致加载DLL出错。如果python也有独立的clr包已经安装,就先卸载。然后检查pythonnet包的安装情况。3.注意importclr代码需要set_runtime之后导入,否则加密后的信息虽然不会报
- C/C++贪心算法
嗜血战魔
c语言c++贪心算法
C++中的贪心算法一、基本概念贪心算法(又称贪婪算法,GreedyAlgorithm)是指,在对问题求解时,总是做出在当前看来是最好的选择,不从整体最优上加以考虑,所做出的仅是在某种意义上的局部最优解。贪心算法不是对所有问题都能得到整体最优解,但对范围相当广泛的许多问题能产生整体最优解或者是整体最优解的近似解。它需要满足贪心选择性质和最优子结构性质:贪心选择性质:原问题的整体最优解可以通过一系列局
- python-调用c#代码
淀粉肠狂热粉
python大法好c#和WPFpythonc#开发语言
环境:win10,netframework4,python3.9镜像:C#-使用IronPython调用python代码_ironpythonwpf-CSDN博客https://blog.csdn.net/pxy7896/article/details/119929434目录helloword不接收参数接收参数其他例子helloword不接收参数hello.cs内容如下:usingSystem;c
- c++课堂——贪心算法
mjyleon
c++贪心算法开发语言
一、贪心算法如果找出局部最优解并可以推出全局最优解,就是贪心。如果有四种硬币:二角五分、一角、五分、一分现在要找给某顾客六角三分钱,哪种找钱方法拿出的硬币个数最少呢?如果要找的是4角呢?二、概念所谓贪心算法是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。贪心算法没有固定的算法框架,算法设计的关键是贪心策略的选择。必须注
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s