- 李宏毅机器学习笔记——反向传播算法
小陈phd
机器学习机器学习算法神经网络
反向传播算法反向传播(Backpropagation)是一种用于训练人工神经网络的算法,它通过计算损失函数相对于网络中每个参数的梯度来更新这些参数,从而最小化损失函数。反向传播是深度学习中最重要的算法之一,通常与梯度下降等优化算法结合使用。反向传播的基本原理反向传播的核心思想是利用链式法则(ChainRule)来高效地计算损失函数相对于每个参数的梯度。以下是反向传播的基本步骤:前向传播(Forwa
- 反向传播算法:深度神经网络学习的核心机制
2402_85758936
算法dnn学习
引言深度神经网络(DNNs)之所以在众多领域取得革命性的成功,很大程度上归功于其强大的学习能力,而这一能力的核心是反向传播算法(Backpropagation)。这是一种高效的监督学习算法,用于训练多层前馈神经网络。本文将深入探讨反向传播算法的工作原理及其在DNN中的应用。反向传播算法的基本概念反向传播算法结合了梯度下降优化和链式法则,通过计算损失函数关于网络参数的梯度来更新网络权重。1.损失函数
- cnn卷积神经网络反向传播,卷积神经网络维度变化
阳阳2013哈哈
PHPcnn机器学习深度学习神经网络
卷积神经网络是如何反向调整参数的?卷积神经网络反向传播和bp有什么区别如何理解神经网络里面的反向传播算法反向传播算法(Backpropagation)是目前用来训练人工神经网络(ArtificialNeuralNetwork,ANN)的最常用且最有效的算法。其主要思想是:(1)将训练集数据输入到ANN的输入层,经过隐藏层,最后达到输出层并输出结果,这是ANN的前向传播过程;(2)由于ANN的输出结
- 【天幕系列 03】深度学习领域的最新前沿:2024年的关键突破与趋势
浅夏的猫
随笔热门话题java大数据人工智能深度学习ai
文章目录导言01深度学习的基本原理和算法1.1神经网络(NeuralNetworks)1.2前馈神经网络(FeedforwardNeuralNetwork)1.3反向传播算法(Backpropagation)1.4激活函数(ActivationFunction)1.5深度神经网络(DeepNeuralNetworks)1.7优化算法1.8正则化1.9批量训练(BatchTraining)02深度学
- 深度学习之反向传播算法的直观理解
Stark0x01
深度学习之反向传播算法的直观理解如何直观地解释backpropagation算法?https://www.zhihu.com/question/27239198BackPropagation算法是多层神经网络的训练中举足轻重的算法。简单的理解,它的确就是复合函数的链式法则,但其在实际运算中的意义比链式法则要大的多。要回答题主这个问题“如何直观的解释backpropagation算法?”需要先直观理
- 深度学习之反向传播算法(backward())
Tomorrowave
人工智能深度学习算法人工智能
文章目录概念算法的思路概念反向传播(英语:Backpropagation,缩写为BP)是“误差反向传播”的简称,是一种与最优化方法(如梯度下降法)结合使用的,用来训练人工神经网络的常见方法。该方法对网络中所有权重计算损失函数的梯度。这个梯度会反馈给最优化方法,用来更新权值以最小化损失函数。(误差的反向传播)算法的思路多层神经网络的教学过程反向传播算法为了说明这一点使用如下图所示处理具有两个输入和一
- 前向传播算法 Forward propagation 与反向传播算法 Back propagation
仍然是提供的
虽然学深度学习有一段时间了,但是对于一些算法的具体实现还是模糊不清,用了很久也不是很了解。因此特意先对深度学习中的相关基础概念做一下总结。先看看前向传播算法(Forwardpropagation)与反向传播算法(Backpropagation)。1.前向传播如图所示,这里讲得已经很清楚了,前向传播的思想比较简单。举个例子,假设上一层结点i,j,k,…等一些结点与本层的结点w有连接,那么结点w的值怎
- BP神经网络风速预测
MATLAB代码顾问
神经网络人工智能深度学习
BP(Backpropagation)神经网络,也称为反向传播神经网络,是一种非常重要的人工神经网络。它基于梯度下降算法,通过反向传播误差来更新神经网络中的权重和偏差,以达到优化网络和提高预测准确性的目的。BP神经网络主要包括以下几个步骤:前向传播:在这个阶段,输入数据被送入网络,并通过每一层传播,直到输出层。每一层的输出都是下一层的输入。每个神经元的输出都是其权重加权输入的总和,再经过一个活化函
- 大模型学习 一
wangqiaowq
学习
https://www.bilibili.com/video/BV1Kz4y1x7AK/?spm_id_from=333.337.search-card.all.clickGPU计算单元多并行计算能力强指数更重要A10080GV100A100海外100元/时单卡多卡并行:单机多卡模型并行有资源的浪费反向传播反向传播(Backpropagation,简称BP)是一种用于训练人工神经网络的关键算法,特
- 深度学习基础--反向传播
掰不开桃子的男人
Modelimage.png前向传播image.png反向传播求误差image.png求对J的影响image.pngimage.png求对J的影响image.pngimage.png误差反传image.pngimage.pngimage.png参考:深度学习—反向传播(BP)理论推导-Backpropagation算法的推导与直观图解-文之-博客园
- 空气质量预测 | Matlab实现基于BP神经网络回归的空气质量预测模型
天天酷科研
空气质量预测(AQP)matlab神经网络回归BP神经网络
文章目录效果一览文章概述源码设计参考资料效果一览文章概述政府机构使用空气质量指数(AQI)向公众传达当前空气污染程度或预测空气污染程度。随着AQI的上升,公共卫生风险也会增加。不同国家有自己的空气质量指数,对应不同国家的空气质量标准。基于BP(Backpropagation)神经网络的回归模型可以用于空气质量的预测。BP神经网络是一种常见的人工神经网络,它可以通过学习样本数据的输入和输出之间的关系
- BP图片降噪MATLAB代码
MATLAB代码顾问
matlab开发语言
BP(BackPropagation)神经网络是一种常用的深度学习模型,可以用于图像降噪。主要步骤包括:构建BP神经网络模型。包括输入层、隐藏层和输出层。输入层大小与图像大小相同,输出层大小也与输入图像大小相同。隐藏层根据图像复杂度设定。准备训练数据。使用干净图像作为输入,加入噪声后的图像作为目标输出。训练BP网络。使用均方误差作为损失函数,通过误差反向传播算法训练网络的参数。降噪处理。使用受噪声
- 人工神经网络算法有哪些,人工神经网络算法优点
「已注销」
算法神经网络
神经网络算法的人工神经网络人工神经网络(ArtificialNeuralNetworks,ANN)系统是20世纪40年代后出现的。它是由众多的神经元可调的连接权值连接而成,具有大规模并行处理、分布式信息存储、良好的自组织自学习能力等特点。BP(BackPropagation)算法又称为误差反向传播算法,是人工神经网络中的一种监督式的学习算法。BP神经网络算法在理论上可以逼近任意函数,基本的结构由非
- task1
欧飞红
线性回归反向传播算法什么叫反向传播,有没有直观理解?如何直观地解释backpropagation算法?推荐里面的第一、第二个答案pytorch常用函数本视频用了许多pytorch的函数,由于不是太了解pytorch内的函数,因此查询记录了一下。torch.ones()/torch.zeros(),与MATLAB的ones/zeros很接近。初始化生成均匀分布torch.rand(sizes,out
- 深度学习之反向传播
丘小羽
pytorch深度学习人工智能
反向传播英文叫做BackPropagation。为什么需要使用反向传播对于简单的模型我们可以用解析式求出它的损失函数的梯度,例如,其损失函数的梯度就是,我们可以通过我们的数学知识很容易就得到其损失函数的梯度,继而进行使用梯度下降算法是参数(权重)更新。但是这仅限于对于简单的模型,一旦模型的深度增加,模型变得复杂,我们就很难直观的看出损失函数的梯度。例如这个模型,每连接的两个节点里面都有相应的权重,
- 反向传播
将_4c15
一、前言这是一场以误差(Error)为主导的反向传播(BackPropagation)运动,旨在得到最优的全局参数矩阵,进而将多层神经网络应用到分类或者回归任务中去。前向传递输入信号直至输出产生误差,反向传播误差信息更新权重矩阵。这两句话很好的形容了信息的流动方向,权重得以在信息双向流动中得到优化,这让我想到了北京城的夜景,车辆川流不息,车水马龙,你来我往(*॑꒳॑*)⋆*。至于为什么会提出反向传
- BP神经网络的MATLAB实现(含源代码)
沅_Yuan
炼丹师神经网络matlab人工智能
BP(backpropagation)神经网络是1986年由Rumelhart和McClelland为首的科学家提出的概念,是一种按照误差逆向传播算法训练的多层前馈神经网络,是应用最广泛的神经网络模型之一具体数学推导以及原理在本文不做详细介绍,本文将使用MATLAB进行BP神经网络的应用与实践1BP神经网络结构BP神经网络是一种多层前馈神经网络,其主要特点是:信号是前向传播,误差是后向传播。经典的
- 【GAMES101】Lecture 08 着色-Blinn-Phong反射模型
·叶茂林·
GAMES101图形渲染
目录Blinn-Phong反射模型-高光Blinn-Phong反射模型-环境光照Blinn-Phong反射模型Blinn-Phong反射模型-高光我们在lecture7的时候讲了这个Blinn-Phong反射模型的漫反射部分,现在我们继续讲Blinn-Phong反射模型的高光部分这个高光是怎么产生的呢,我们说当这个物体的表面非常光滑的时候,光照射过去这个表面就会特别亮,就是这么个道理,但是没有绝对
- 反向传播(Back Propagation)
chairon
PyTorch深度学习实践pytorch深度学习人工智能
目录回顾简单模型的梯度计算反向传播计算图链式求导链式法则定理:Forward前馈计算反向传播BackPropagation例子线性模型的计算图计算前馈过程反向传播过程(逆向求导)练习Pytorch中的前馈过程和反向传播过程Tensor代码小结练习回顾简单模型的梯度计算最简单的线性模型可以简化为y=wx,x是输入,w是参数,是模型需要计算出来的,y是预测值,*可以看成网络中的计算。其实这就可以是一个
- Unsupervised Domain Adaptation by Backpropagation阅读笔记
zhaoxin94
AboutthispaperTitle:UnsupervisedDomainAdaptationbyBackpropagationAuthors:YaroslavGanin,VictorLempitskyTopic:DomainAdaptationFrom:ICML2015Contributions本文的主要贡献是提出了一种全新的度量源域和目标域数据分布差异性的方法(基于对抗的方法)。Method
- backpropagation算法上
遇见百分百
1、在1970年就被提出,1986年的DavidRumelhart,GeoffreyHinton,andRonaldWilliams提出的论文才得到重视,可以解决神经网络中的学习2、解决问题Backpropagation核心解决的问题:∂C/∂w和∂C/∂b的计算,针对cost函数C
- 深度学习面试题
AI信仰者
一、神经网络基础问题(1)Backpropagation(反向传播)后向传播是在求解损失函数L对参数w求导时候用到的方法,目的是通过链式法则对参数进行一层一层的求导。这里重点强调:要将参数进行随机初始化而不是全部置0,否则所有隐层的数值都会与输入相关,这称为对称失效。(2)梯度消失、梯度爆炸梯度消失:这本质上是由于激活函数的选择导致的,最简单的sigmoid函数为例,在函数的两端梯度求导结果非常小
- 反向传播算法推导过程(看一篇就够了)
你好,明天,,
Python代码深度学习深度学习
反向传播BackPropagation算法简称BP,算是神经网络的基础了。在神经网络中,正向传播用于模型的训练,模型中的参数不一定达到最佳效果,需要进行“反向传播”进行权重等参数的修正。此外,神经网络每层的每个神经元都可以根据误差信号修正每层的权重。反向传播只需应用链式求导法则即可求出:这是典型的三层神经网络的基本构成,LayerL1是输入层,LayerL2是隐含层,LayerL3是隐含层,现在我
- 反向传播
人工智能教学实践
教学改革神经网络算法人工智能
反向传播(Backpropagation)是一种用于训练神经网络的算法,它通过计算损失函数对网络中每个参数的梯度,从而更新参数以最小化损失函数。反向传播算法可以分为线性反向传播和非线性反向传播。线性反向传播的原理和算法Python实现:线性反向传播是指在神经网络中只有线性激活函数的情况下,通过链式法则计算每个参数的梯度。具体步骤如下:前向传播:计算网络的输出值。计算损失函数:根据网络的输出值和真实
- 李宏毅机器学习第一周_初识机器学习
Nyctophiliaa
机器学习人工智能深度学习
目录摘要一、机器学习基本概念1、MachineLearning≈LookingforFunction2、认识一些专有名词二、预测YouTube某天的浏览量一、利用Linearmodel二、定义更复杂的函数表达式三、ReLU函数四、Sigmoid函数与ReLU函数的对比三、反向传播(Backpropagation)一、反向传播的基本思想(正向计算-误差计算-梯度计算-参数更新)二、计算过程总结摘要在
- 【Python】全连接神经网络
Jc.MJ
Pythonpython神经网络开发语言
全连接神经网络一、前言二、反向传播算法(Backpropagation)3.1简单介绍3.2核心思想3.3应用三、全连接神经网络3.1基本原理3.2学习率和损失率3.2实现一、前言全连接神经网络(FullyConnectedNeuralNetwork)是一种常见的深度学习模型,也称为密集神经网络(DNN)。在全连接神经网络中,每一层的神经元都与前一层的所有神经元相连,并通过权重和激活函数来处理输入
- 【BI&AI】lecture 3 - GD & BP & CNN & Hands-on
头发没了还会再长
人工智能cnn神经网络
GD&BP&CNN&Hands-on专业术语gradientdescent(GD)梯度下降backpropagation(BP)向传播ConvolutionalNeuralNetwork(CNN)卷积神经网络forwardpropagation前向传播biologicallysymmetry生物对称性synaptic突触axon轴突课程大纲ThegoalofAI:minimizethelossfu
- 深度学习MLP_实战演练使用感知机用于感情识别_keras
郭小儒
深度学习模型深度学习keras人工智能
目录(1)whydeeplearningisgamechanging?(2)itallstartedwithaneuron(3)Perceptron(4)PerceptronforBinaryClassification(5)putitalltogether(6)multilayerPerceptron(7)backpropagation(8)实战演练-使用感知机用于感情识别1.数据集划分2.将文
- 【Matlab】BP 神经网络时序预测算法
千源万码
Matlabmatlab神经网络算法
资源下载:https://download.csdn.net/download/vvoennvv/88681507一,概述BP神经网络是一种常见的人工神经网络,也是一种有监督学习的神经网络。其全称为“BackPropagation”,即反向传播算法。BP神经网络主要由输入层、隐藏层和输出层组成,每一层都由多个神经元组成。BP神经网络的学习过程是通过不断地调整权值和偏置值来逐步提高网络的精度。BP神
- 机器学习之BP神经网络精讲(Backpropagation Neural Network(附案例代码))
贾斯汀玛尔斯
数据湖python机器学习神经网络人工智能
概念BP神经网络(BackpropagationNeuralNetwork)是一种常见的人工神经网络,它通过反向传播算法来训练网络,调整连接权重以最小化预测输出与实际输出之间的误差。这种网络结构包含输入层、隐藏层和输出层,使用梯度下降算法来优化权重。结构:BP神经网络(BackpropagationNeuralNetwork)是一种具有多层结构的前馈神经网络,它通过不断地调整权重来学习输入与输出之
- Spring的注解积累
yijiesuifeng
spring注解
用注解来向Spring容器注册Bean。
需要在applicationContext.xml中注册:
<context:component-scan base-package=”pagkage1[,pagkage2,…,pagkageN]”/>。
如:在base-package指明一个包
<context:component-sc
- 传感器
百合不是茶
android传感器
android传感器的作用主要就是来获取数据,根据得到的数据来触发某种事件
下面就以重力传感器为例;
1,在onCreate中获得传感器服务
private SensorManager sm;// 获得系统的服务
private Sensor sensor;// 创建传感器实例
@Override
protected void
- [光磁与探测]金吕玉衣的意义
comsci
这是一个古代人的秘密:现在告诉大家
信不信由你们:
穿上金律玉衣的人,如果处于灵魂出窍的状态,可以飞到宇宙中去看星星
这就是为什么古代
- 精简的反序打印某个数
沐刃青蛟
打印
以前看到一些让求反序打印某个数的程序。
比如:输入123,输出321。
记得以前是告诉你是几位数的,当时就抓耳挠腮,完全没有思路。
似乎最后是用到%和/方法解决的。
而今突然想到一个简短的方法,就可以实现任意位数的反序打印(但是如果是首位数或者尾位数为0时就没有打印出来了)
代码如下:
long num, num1=0;
- PHP:6种方法获取文件的扩展名
IT独行者
PHP扩展名
PHP:6种方法获取文件的扩展名
1、字符串查找和截取的方法
1
$extension
=
substr
(
strrchr
(
$file
,
'.'
), 1);
2、字符串查找和截取的方法二
1
$extension
=
substr
- 面试111
文强chu
面试
1事务隔离级别有那些 ,事务特性是什么(问到一次)
2 spring aop 如何管理事务的,如何实现的。动态代理如何实现,jdk怎么实现动态代理的,ioc是怎么实现的,spring是单例还是多例,有那些初始化bean的方式,各有什么区别(经常问)
3 struts默认提供了那些拦截器 (一次)
4 过滤器和拦截器的区别 (频率也挺高)
5 final,finally final
- XML的四种解析方式
小桔子
domjdomdom4jsax
在平时工作中,难免会遇到把 XML 作为数据存储格式。面对目前种类繁多的解决方案,哪个最适合我们呢?在这篇文章中,我对这四种主流方案做一个不完全评测,仅仅针对遍历 XML 这块来测试,因为遍历 XML 是工作中使用最多的(至少我认为)。 预 备 测试环境: AMD 毒龙1.4G OC 1.5G、256M DDR333、Windows2000 Server
- wordpress中常见的操作
aichenglong
中文注册wordpress移除菜单
1 wordpress中使用中文名注册解决办法
1)使用插件
2)修改wp源代码
进入到wp-include/formatting.php文件中找到
function sanitize_user( $username, $strict = false
- 小飞飞学管理-1
alafqq
管理
项目管理的下午题,其实就在提出问题(挑刺),分析问题,解决问题。
今天我随意看下10年上半年的第一题。主要就是项目经理的提拨和培养。
结合我自己经历写下心得
对于公司选拔和培养项目经理的制度有什么毛病呢?
1,公司考察,选拔项目经理,只关注技术能力,而很少或没有关注管理方面的经验,能力。
2,公司对项目经理缺乏必要的项目管理知识和技能方面的培训。
3,公司对项目经理的工作缺乏进行指
- IO输入输出部分探讨
百合不是茶
IO
//文件处理 在处理文件输入输出时要引入java.IO这个包;
/*
1,运用File类对文件目录和属性进行操作
2,理解流,理解输入输出流的概念
3,使用字节/符流对文件进行读/写操作
4,了解标准的I/O
5,了解对象序列化
*/
//1,运用File类对文件目录和属性进行操作
//在工程中线创建一个text.txt
- getElementById的用法
bijian1013
element
getElementById是通过Id来设置/返回HTML标签的属性及调用其事件与方法。用这个方法基本上可以控制页面所有标签,条件很简单,就是给每个标签分配一个ID号。
返回具有指定ID属性值的第一个对象的一个引用。
语法:
&n
- 励志经典语录
bijian1013
励志人生
经典语录1:
哈佛有一个著名的理论:人的差别在于业余时间,而一个人的命运决定于晚上8点到10点之间。每晚抽出2个小时的时间用来阅读、进修、思考或参加有意的演讲、讨论,你会发现,你的人生正在发生改变,坚持数年之后,成功会向你招手。不要每天抱着QQ/MSN/游戏/电影/肥皂剧……奋斗到12点都舍不得休息,看就看一些励志的影视或者文章,不要当作消遣;学会思考人生,学会感悟人生
- [MongoDB学习笔记三]MongoDB分片
bit1129
mongodb
MongoDB的副本集(Replica Set)一方面解决了数据的备份和数据的可靠性问题,另一方面也提升了数据的读写性能。MongoDB分片(Sharding)则解决了数据的扩容问题,MongoDB作为云计算时代的分布式数据库,大容量数据存储,高效并发的数据存取,自动容错等是MongoDB的关键指标。
本篇介绍MongoDB的切片(Sharding)
1.何时需要分片
&nbs
- 【Spark八十三】BlockManager在Spark中的使用场景
bit1129
manager
1. Broadcast变量的存储,在HttpBroadcast类中可以知道
2. RDD通过CacheManager存储RDD中的数据,CacheManager也是通过BlockManager进行存储的
3. ShuffleMapTask得到的结果数据,是通过FileShuffleBlockManager进行管理的,而FileShuffleBlockManager最终也是使用BlockMan
- yum方式部署zabbix
ronin47
yum方式部署zabbix
安装网络yum库#rpm -ivh http://repo.zabbix.com/zabbix/2.4/rhel/6/x86_64/zabbix-release-2.4-1.el6.noarch.rpm 通过yum装mysql和zabbix调用的插件还有agent代理#yum install zabbix-server-mysql zabbix-web-mysql mysql-
- Hibernate4和MySQL5.5自动创建表失败问题解决方法
byalias
J2EEHibernate4
今天初学Hibernate4,了解了使用Hibernate的过程。大体分为4个步骤:
①创建hibernate.cfg.xml文件
②创建持久化对象
③创建*.hbm.xml映射文件
④编写hibernate相应代码
在第四步中,进行了单元测试,测试预期结果是hibernate自动帮助在数据库中创建数据表,结果JUnit单元测试没有问题,在控制台打印了创建数据表的SQL语句,但在数据库中
- Netty源码学习-FrameDecoder
bylijinnan
javanetty
Netty 3.x的user guide里FrameDecoder的例子,有几个疑问:
1.文档说:FrameDecoder calls decode method with an internally maintained cumulative buffer whenever new data is received.
为什么每次有新数据到达时,都会调用decode方法?
2.Dec
- SQL行列转换方法
chicony
行列转换
create table tb(终端名称 varchar(10) , CEI分值 varchar(10) , 终端数量 int)
insert into tb values('三星' , '0-5' , 74)
insert into tb values('三星' , '10-15' , 83)
insert into tb values('苹果' , '0-5' , 93)
- 中文编码测试
ctrain
编码
循环打印转换编码
String[] codes = {
"iso-8859-1",
"utf-8",
"gbk",
"unicode"
};
for (int i = 0; i < codes.length; i++) {
for (int j
- hive 客户端查询报堆内存溢出解决方法
daizj
hive堆内存溢出
hive> select * from t_test where ds=20150323 limit 2;
OK
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
问题原因: hive堆内存默认为256M
这个问题的解决方法为:
修改/us
- 人有多大懒,才有多大闲 (评论『卓有成效的程序员』)
dcj3sjt126com
程序员
卓有成效的程序员给我的震撼很大,程序员作为特殊的群体,有的人可以这么懒, 懒到事情都交给机器去做 ,而有的人又可以那么勤奋,每天都孜孜不倦得做着重复单调的工作。
在看这本书之前,我属于勤奋的人,而看完这本书以后,我要努力变成懒惰的人。
不要在去庞大的开始菜单里面一项一项搜索自己的应用程序,也不要在自己的桌面上放置眼花缭乱的快捷图标
- Eclipse简单有用的配置
dcj3sjt126com
eclipse
1、显示行号 Window -- Prefences -- General -- Editors -- Text Editors -- show line numbers
2、代码提示字符 Window ->Perferences,并依次展开 Java -> Editor -> Content Assist,最下面一栏 auto-Activation
- 在tomcat上面安装solr4.8.0全过程
eksliang
Solrsolr4.0后的版本安装solr4.8.0安装
转载请出自出处:
http://eksliang.iteye.com/blog/2096478
首先solr是一个基于java的web的应用,所以安装solr之前必须先安装JDK和tomcat,我这里就先省略安装tomcat和jdk了
第一步:当然是下载去官网上下载最新的solr版本,下载地址
- Android APP通用型拒绝服务、漏洞分析报告
gg163
漏洞androidAPP分析
点评:记得曾经有段时间很多SRC平台被刷了大量APP本地拒绝服务漏洞,移动安全团队爱内测(ineice.com)发现了一个安卓客户端的通用型拒绝服务漏洞,来看看他们的详细分析吧。
0xr0ot和Xbalien交流所有可能导致应用拒绝服务的异常类型时,发现了一处通用的本地拒绝服务漏洞。该通用型本地拒绝服务可以造成大面积的app拒绝服务。
针对序列化对象而出现的拒绝服务主要
- HoverTree项目已经实现分层
hvt
编程.netWebC#ASP.ENT
HoverTree项目已经初步实现分层,源代码已经上传到 http://hovertree.codeplex.com请到SOURCE CODE查看。在本地用SQL Server 2008 数据库测试成功。数据库和表请参考:http://keleyi.com/a/bjae/ue6stb42.htmHoverTree是一个ASP.NET 开源项目,希望对你学习ASP.NET或者C#语言有帮助,如果你对
- Google Maps API v3: Remove Markers 移除标记
天梯梦
google maps api
Simply do the following:
I. Declare a global variable:
var markersArray = [];
II. Define a function:
function clearOverlays() {
for (var i = 0; i < markersArray.length; i++ )
- jQuery选择器总结
lq38366
jquery选择器
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
- 基础数据结构和算法六:Quick sort
sunwinner
AlgorithmQuicksort
Quick sort is probably used more widely than any other. It is popular because it is not difficult to implement, works well for a variety of different kinds of input data, and is substantially faster t
- 如何让Flash不遮挡HTML div元素的技巧_HTML/Xhtml_网页制作
刘星宇
htmlWeb
今天在写一个flash广告代码的时候,因为flash自带的链接,容易被当成弹出广告,所以做了一个div层放到flash上面,这样链接都是a触发的不会被拦截,但发现flash一直处于div层上面,原来flash需要加个参数才可以。
让flash置于DIV层之下的方法,让flash不挡住飘浮层或下拉菜单,让Flash不档住浮动对象或层的关键参数:wmode=opaque。
方法如下:
- Mybatis实用Mapper SQL汇总示例
wdmcygah
sqlmysqlmybatis实用
Mybatis作为一个非常好用的持久层框架,相关资料真的是少得可怜,所幸的是官方文档还算详细。本博文主要列举一些个人感觉比较常用的场景及相应的Mapper SQL写法,希望能够对大家有所帮助。
不少持久层框架对动态SQL的支持不足,在SQL需要动态拼接时非常苦恼,而Mybatis很好地解决了这个问题,算是框架的一大亮点。对于常见的场景,例如:批量插入/更新/删除,模糊查询,多条件查询,联表查询,