独立成分分析matlab代码

独立成分分析matlab代码

在文章 信号去噪之独立成分分析(ICA) 中以python代码为例,有读者朋友问matlab代码,以下给出示例:

python:

import numpy as np
from sklearn.decomposition import FastICA
import matplotlib.pyplot as plt

# 生成混合信号
np.random.seed(0)
time = np.linspace(0, 5, 1000)
signal = np.sin(2 * time)  # 信号源
noise = np.random.normal(size=s1.shape)  # 噪声
s1 = signal + noise
s2 = 0.5 * signal + noise

# 执行独立成分分析
ica = FastICA(n_components=2)
S = np.c_[s1, s2]
S = ica.fit_transform(S)

# 绘制混合信号和分离信号
plt.figure()

plt.subplot(4, 1, 1)
plt.title('Signal Source s1')
plt.plot(s1)

plt.subplot(4, 1, 2)
plt.title('Signal Source s2')
plt.plot(s2)

plt.subplot(4, 1, 3)
plt.title('Separated Signal')
plt.plot(S[:, 0])

plt.subplot(4, 1, 4)
plt.title('Separated Noise')
plt.plot(S[:, 1])

plt.tight_layout()
plt.show()

matlab:

% 生成混合信号
rng(0); % 设置随机数种子
time = linspace(0, 5, 1000);
signal = sin(2 * time); % 信号源
noise = randn(1, length(signal)); % 噪声
s1 = signal + noise;
s2 = 0.5 * signal + noise;

% 执行独立成分分析
X = [s1' s2'];
[icasig, A, W] = fastica(X', 'numOfIC', 2);

% 绘制混合信号和分离信号
figure;

subplot(4, 1, 1);
title('Signal Source s1');
plot(s1);

subplot(4, 1, 2);
title('Signal Source s2');
plot(s2);

subplot(4, 1, 3);
title('Separated Signal');
plot(icasig(:, 1));

subplot(4, 1, 4);
title('Separated Noise');
plot(icasig(:, 2));

sgtitle('ICA Separation Results');

上面的代码是根据文档写出,本地没有matlab环境,未测试哈,有环境的朋友可以试试

你可能感兴趣的:(算法,matlab)