Scrambled Polygon POJ - 2007 (极角排序)

A closed polygon is a figure bounded by a finite number of line segments. The intersections of the bounding line segments are called the vertices of the polygon. When one starts at any vertex of a closed polygon and traverses each bounding line segment exactly once, one comes back to the starting vertex.

A closed polygon is called convex if the line segment joining any two points of the polygon lies in the polygon. Figure 1 shows a closed polygon which is convex and one which is not convex. (Informally, a closed polygon is convex if its border doesn't have any "dents".)

The subject of this problem is a closed convex polygon in the coordinate plane, one of whose vertices is the origin (x = 0, y = 0). Figure 2 shows an example. Such a polygon will have two properties significant for this problem.

The first property is that the vertices of the polygon will be confined to three or fewer of the four quadrants of the coordinate plane. In the example shown in Figure 2, none of the vertices are in the second quadrant (where x < 0, y > 0).

To describe the second property, suppose you "take a trip" around the polygon: start at (0, 0), visit all other vertices exactly once, and arrive at (0, 0). As you visit each vertex (other than (0, 0)), draw the diagonal that connects the current vertex with (0, 0), and calculate the slope of this diagonal. Then, within each quadrant, the slopes of these diagonals will form a decreasing or increasing sequence of numbers, i.e., they will be sorted. Figure 3 illustrates this point.

Input
The input lists the vertices of a closed convex polygon in the plane. The number of lines in the input will be at least three but no more than 50. Each line contains the x and y coordinates of one vertex. Each x and y coordinate is an integer in the range -999..999. The vertex on the first line of the input file will be the origin, i.e., x = 0 and y = 0. Otherwise, the vertices may be in a scrambled order. Except for the origin, no vertex will be on the x-axis or the y-axis. No three vertices are colinear.
Output
The output lists the vertices of the given polygon, one vertex per line. Each vertex from the input appears exactly once in the output. The origin (0,0) is the vertex on the first line of the output. The order of vertices in the output will determine a trip taken along the polygon's border, in the counterclockwise direction. The output format for each vertex is (x,y) as shown below.
Sample Input
0 0
70 -50
60 30
-30 -50
80 20
50 -60
90 -20
-30 -40
-10 -60
90 10
Sample Output
(0,0)
(-30,-40)
(-30,-50)
(-10,-60)
(50,-60)
(70,-50)
(90,-20)
(90,10)
(80,20)
(60,30)

题意:给你一个凸包的点,要求按逆时针顺序输出这些点,输入第一个点是原点,输出的第一个点也必须是原点。

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define inf 0x3fffffff
using namespace std;
typedef long long LL;
const int mod=1e9+7;
const double eps=1e-8;
const double pi=acos(-1);
struct node
{
    int x,y;
}s[55];
int cross(node p0,node p1,node p2)//计算极角
{
    return (p1.x-p0.x)*(p2.y-p0.y)-(p1.y-p0.y)*(p2.x-p0.x);
}
int cmp(node p1,node p2)
{
    node p0;
    p0.x=0,p0.y=0;
    return cross(p0,p1,p2)>0;//极角大于0是逆时针,小于0则为顺时针
}
int main()
{
    int k=0;
    while(~scanf("%d%d",&s[k].x,&s[k].y)) k++;
    sort(s+1,s+k,cmp);
    for(int i=0;i
参考博客: 极角排序

关于atan2函数:

利用atan2()函数按极角从小到大排序。

 关于atan2()函数:在C语言的math.h或C++中的cmath中有两个求反正切的函数atan(double x)与atan2(double y,double x)  他们返回的值是弧度要转化为角度再自己处理下。

前者接受的是一个正切值(直线的斜率)得到夹角,但是由于正切的规律性本可以有两个角度的但它却只返回一个,因为atan的值域是从-90~90 也就是它只处理一四象限,所以一般不用它。

第二个atan2(double y,double x) 其中y代表已知点的Y坐标,同理x ,返回值是此点与远点连线与x轴正方向的夹角,这样它就可以处理四个象限的任意情况了,它的值域相应的也就是-180~180了

bool cmp1(point a,point b)
{
    if(atan2(a.y,a.x)!=atan2(b.y,b.x))
        return atan2(a.y,a.x)<atan2(b.y,b.x);
    else return a.x<b.x;
}



你可能感兴趣的:(数学,算法刷题,数学,poj)