在过去几年的探索中,业界发现了一个现象,在增大模型参数量和训练数据的同时,在多数任务上,模型的表现会越来越好。因而,现有的大模型LLM,最大参数量已经超过了千亿。
然而,增大模型参数规模,对于一些具有挑战的任务(例如算术、常识推理和符号推理)的效果,并没有太大提升。对于算术类推理任务,我们期望模型生成自然语言逻辑依据来指导并生成最终答案,但是获得逻辑依据是比较复杂昂贵的(标注成本层面)。
自从发现了大模型ICL(In-Context Learning)的能力后,这个问题有个新的解决思路:对某个任务Task,能否为大模型提供一些上下文in-context example作为Prompt,以此来提升模型的推理能力?实验表明,在复杂推理任务上加入ICL带来的增益不明显。因此,便衍生出了CoT的技术。
Chain-of-Thought(CoT)是一种改进的Prompt技术,目的在于提升大模型LLM在复杂推理任务上的表现,如算术推理(arithmetic reasoning)、常识推理(commonsense reasoning)、符号推理(symbolic reasoning)。思维链(CoT)便是一种用于设计 prompt 的方法,即 prompt 中除了有任务的输入和输出外,还包含推理的中间步骤(中间思维)。研究表明,CoT 能极大地提升 LLM 的能力,使之无需任何模型更新便能解决一些难题。
ICL的思路是在新测试样本中加入示例(demonstration)来重构prompt。
与ICL(In-Context Learning)有所不同,CoT对每个demonstration,会使用中间推理过程(intermediate reasoning steps)来重新构造demonstration,使模型在对新样本预测时,先生成中间推理的思维链,再生成结果,目的是提升LLM在新样本中的表现。
一般来说CoT会分为两种:基于人工示例标注的Few-shot CoT和无人工示例标注的Zero-shot CoT。下面将逐一介绍。
假设基于ICL的测试样本输入表示为 < i n p u t , d e m o n s t r a t i o n s > <input,demonstrations>,那么加入Few-shot CoT的测试样本输入,可表示为 < i n p u t , C o T > <input,CoT>。
我们知道了加入CoT的示例后,能提升LLM的表现。那么我们应该如何构造或使用CoT?
Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
这是思维链的开山之作。GPT 生成式预训练模型中的“T”,也就是 Transformer,就是谷歌大脑搞出来的。但是,预训练 + 精调的大模型搞了几年,仍然没办法很好地完成多步骤推理任务,比如数学问题和常识推理。
所以 Jason Wei 等人提出了思维链提示的方法,真的一下子就让大模型的逻辑推理能力不一样了。
具体来说,有三个不一样:
CoT 提示过程是一种最近开发的提示方法,它鼓励大语言模型解释其推理过程。思维链的主要思想是通过向大语言模型展示一些少量的 exapmles,在样例中解释推理过程,大语言模型在回答提示时也会显示推理过程。这种推理的解释往往会引导出更准确的结果。
以一个数学题为例:
标准prompting,模型输入:
问:罗杰有5个网球,他又买了两盒网球,每盒有3个网球。他现在有多少网球?
答:答案是11
问:食堂有23个苹果,如果他们用掉20个后又买了6个。他们现在有多少个苹果?
模型输出:
答:答案是27 × \times ×
可以看到模型无法做出正确的回答。但如果说,我们给模型一些关于解题的思路,就像我们数学考试,都会把解题过程写出来再最终得出答案,不然无法得分。CoT 做的就是这件事,示例如下:
CoT prompting,模型输入:
问:罗杰有5个网球,他又买了两盒网球,每盒有3个网球。他现在有多少网球?
答:罗杰一开始有5个网球,2盒3个网球,一共就是2*3=6个网球,5+6=11。答案是11.
问:食堂有23个苹果,如果他们用掉20个后又买了6个。他们现在有多少个苹果?
模型输出:
答:食堂原来有23个苹果,他们用掉20个,所以还有23-20=3个。他们又买了6个,所以现在有6+3=9。答案是9 ✓ \checkmark ✓
可以看到,类似的算术题,思维链提示会在给出答案之前,还会自动给出推理步骤。
CoT 在实现上修改了 demonstration(示例) 每个 example 的 target,source 保留原样,但 target 从原先的 answer(a) 换成了 rationale® + a。因此可以看到右侧,所有内容均由模型生成,模型不是生成 a,而是生成r+a。
思维链提示,就是把一个多步骤推理问题,分解成很多个中间步骤,分配给更多的计算量,生成更多的 token,再把这些答案拼接在一起进行求解。
《Self-Consistency Improves Chain of Thought Reasoning in Language Models》
这篇文章是 CoT 后很快的一个跟进工作,是 CoT 系列改进的重要一步,在 2022 年 3 月在arxiv上被放出来。这篇文章几乎用的和 CoT 完全一样的数据集和设置,主要改进是对答案进行了多数投票(majority vote),并且发现其可以显著地提高思维链方法的性能。
论文基于一个思想:一个复杂的推理任务,其可以有多种推理路径(即解题思路),最终都能够得到正确的答案。故Self-Consistency在解码过程中,抛弃了greedy decoding的策略,而是使用采样的方式,选择生成不同的推理路径,每个路径对应一个最终答案。
具体做法为:
在下面的图中,左侧的提示是使用少样本思维链范例编写的。使用这个提示,独立生成多个思维链,从每个思维链中提取答案,通过“边缘化推理路径”来计算最终答案。实际上,这意味着取多数答案。
实验表明,对于同一问题生成更多的推理链以供投票往往能取得更好的效果。当推理链数量足够多时,这种方法效果能够胜过使用greedy decoding的CoT方法。
《On the advance of making language models better reasoners》
论文在Self-Consistency的基础上,进一步做了优化。
实验结果显示,本论文的方法相对基于Greedy Decode和Self-Consistency能得到更优的效果。
《Complexity-based prompting for multi-step reasoning》
面对这么多可选的CoT,简单的CoT示例和复杂的CoT示例,对新的样本推理结果会不会产生影响?答案是Yes。
论文探讨了一个问题,在包含简单推理路径的demonstrations和复杂推理路径的demonstrations下,哪个效果会表现较好?(这里的简单和复杂是指 推理链/推理步骤的长度)
本论文继承了Self-Consistency的思想,具体方法:
实验结果表明,本论文的方法效果优于以下方法: (1)人工构建Cot、(2)random Cot、(2)Complex CoT(数据集中最长的多个思维链作为demonstrations)。
《Automatic chain of thought prompting in large language models》
上面提到的方法是基于人工构造CoT,那我们能否让模型自己来生成CoT?本论文就提供了这样一种自动生成CoT的思路。
本论文提到的Manual-CoT,可以等同于Few-shot CoT来理解。
由于Zero-Shot-CoT方法存在不稳定性,而Manual-CoT方法需要大量人工成本投入。作者提出了一种基于Auto-CoT的方法,自动构建包含问题和推理链的说明样例(demonstrations)。
整个过程分了两个阶段:
对于每一个簇 i i i里的每一个问题 q j ( i ) q^{(i)}_j qj(i),使用Zero-Shot-CoT的方法,将 [ Q : q j ( i ) , A : [ P ] ] [Q:q^{(i)}_j,A:[P]] [Q:qj(i),A:[P]](其中 [ P ] [P] [P]表示"Let’s think step by step")输入到LLMs,LLMs生成该问题的推理链 r j ( i ) r^{(i)}_j rj(i)和答案 a j ( i ) a^{(i)}_j aj(i);
若问题 q j ( i ) q^{(i)}_j qj(i)不超过60个tokens,且推理链 r j ( i ) r^{(i)}_j rj(i)不超过5个推理步骤,则将问题+推理链+答案,加入到demostrations列表中: [ Q : q j ( i ) , A : r j ( i ) 。 a j ( i ) ] [Q:q^{(i)}_j,A:r^{(i)}_j。a^{(i)}_j] [Q:qj(i),A:rj(i)。aj(i)];
遍历完所有簇,将得到k个demostrations,将其拼接上测试question,构造成新的Prompt,输入LLMs便可得到生成结果。
值得一提的是,Auto-CoT在多个开源推理任务的数据集上,效果与Manual-CoT相当,甚至某些任务表现得更好。
《Chain of thought prompting elicits reasoning in large language models》
尽管CoT是ICL的一种特殊形式,但是与ICL有所不同的是,CoT中demonstrations的排序对其在新测试样本中的生成结果影响较小,论文对demonstrations进行重排序,在多数推理任务上仅导致小于2%的性能变化。(demonstrations顺序对ICL影响较大)
与Few-shot CoT不同,Zero-shot CoT并不需要人为构造demonstrations,只需要在prompt中加入一个特定的指令,即可驱动LLMs以思维链的方式生成结果。
当然这种不需要人工构造demonstrations的方式,效果相对Few-shot CoT会表现稍微差一点点。但是相对Zero-shot和Few-shot的方法而言,Zero-shot CoT在复杂任务推理上却能带来巨大的效果提升。
《Large language models are zero-shot reasoners》
论文首先提出了Zero-shot CoT的方法,整个流程包含两部分:
1.Reasoning Extraction
2.Answer Extraction
值得一提的是,论文同时发现了,当模型LLM变得越来越大,对于使用Zero-shot的结果带来的增益不大,但是对使用Zero-shot CoT的结果带来的增益较大。
《Scaling Instruction-Finetuned Language Models》
既然在上一篇论文中,已经发现了LLM存在Zero-shot CoT的能力,那如果事先对LLM进行基于CoT的instruction tuning,那模型使用Zero-shot CoT方式在对unseen样本进行预测时,效果会不会更好?本论文给出了肯定的答案。
论文探索了以下可能影响LLM在unseen task上表现的因素:
论文微调数据集包含了1836种指令任务,473个数据集和146种任务类型构成,数据集中包含了9个人工标注的CoT数据集。同时保留一个没出现过的held-out数据集作为模型评估数据集。
使用的模型是PaLM,而经过instruction tuning的模型,称为FlanPaLM(Finetuned Language PaLM)。
研究论文:https://arxiv.org/pdf/2308.09687v2.pdf
官方实现:https://github.com/spcl/graph-of-thoughts
有研究者改进了 CoT,提出了使用 CoT 实现自我一致的方法(CoT-SC);这个方案是生成多个 CoT,再选出其中最佳的结果。还有研究者更进一步提出了思维树(ToT),其做法是通过树(tree)来建模 LLM 推理过程。这能让模型使用不同的思维路径,并能提供全新的功能,比如基于不好的结果反向回溯推理过程。不幸的是,由于 ToT 方法为思维过程强加了严格的树结构,所以会极大限制 prompt 的推理能力。
苏黎世联邦理工学院、Cledar 和华沙理工大学的一个研究团队提出了更进一步的想法:思维图(GoT)。让思维从链到树到图,为 LLM 构建推理过程的能力不断得到提升,研究者也通过实验证明了这一点。他们也发布了自己实现的 GoT 框架。
在进行思考时,人类不会像 CoT 那样仅遵循一条思维链,也不是像 ToT 那样尝试多种不同途径,而是会形成一个更加复杂的思维网。举个例子,一个人可能会先探索一条思维链,然后回溯再探索另一条,然后可能会意识到之前那条链的某个想法可以和当前链结合起来,取长补短,得到一个新的解决方案。类似地,大脑会形成复杂的网络,呈现出类似图的模式,比如循环模式。算法执行时也会揭示出网络的模式,这往往可以表示成有向无环图。
为了解答这些问题以及更多其它问题,这些研究者设计了一种实现 GoT 的模块化架构。该设计有两大亮点。
一是可实现对各个思维的细粒度控制。这让用户可以完全控制与 LLM 进行的对话并使用先进的思维变换,比如将正在进行的推理中两个最有希望的思维组合起来得到一个新的。
二是这种架构设计考虑了可扩展性 —— 可无缝地扩展用于新的思维变换、推理模式(即思维图)和 LLM 模型。这让用户可使用 GoT 快速为 prompt 的新设计思路构建原型,同时实验 GPT-3.5、GPT-4 或 Llama-2 等不同模型。
对于大模型LLM涌现的CoT能力,业界目前的共识是:当模型参数超过100B后,在复杂推理任务中使用CoT是能带来增益的;而当模型小于这个尺寸,CoT并不会带来效果增益。要让大型语言模型(LLM)充分发挥其能力,有效的 prompt 设计方案是必不可少的,为此甚至出现了 prompt engineering 这一新兴领域。
目前,思维链只是在一些有限的领域,比如数学问题,五个常识推理基准(CommonsenseQA,StrategyQA,Date Understanding 和 Sports Understanding 以及 SayCan)上显现出作用,其他类型的任务,像是机器翻译,性能提升效果还有待评估。
还记得在Pretrain+Fine-tuning时代下,对于复杂数学推理任务,如MultiArith、GSM8K下,效果还是不太理想,而短短几年时间,LLM+CoT的模式已经大大提升了该领域的解决能力。随着LLM的继续发展,未来必定会发现更多LLM隐藏的能力和使用方法,让我们拭目以待。