【计算方法与科学建模】矩阵特征值与特征向量的计算(五):乘幂法的加速(带有原点移位的乘幂法)

文章目录

  • 一、Jacobi 旋转法
  • 二、Jacobi 过关法
  • 三、Householder 方法
  • 四、乘幂法
  • 四、乘幂法的加速

  矩阵的特征值(eigenvalue)和特征向量(eigenvector)在很多应用中都具有重要的数学和物理意义。

  本文将详细介绍乘幂法的基本原理和步骤,并给出其Python实现。

一、Jacobi 旋转法

  Jacobi 旋转法的每一次迭代中,需要选择一个非对角元素最大的位置,然后构造相应的旋转矩阵,进行相似变换,使得矩阵逐渐对角化。

【计算方法与科学建模】矩阵特征值与特征向量的计算(一):Jacobi 旋转法及其Python实现

二、Jacobi 过关法

  Jacobi 过关法(Jacobi’s threshold method)是 Jacobi 旋转法的一种改进版本,其主要目的是减少计算工作和提高运行速度。该方法通过动态调整阈值,并根据阈值对非对角元素进行选择性的旋转变换,以逐步对角化对称矩阵。
【计算方法与科学建模】矩阵特征值与特征向量的计算(二):Jacobi 过关法及其Python实现(Jacobi 旋转法的改进)

三、Householder 方法

  如果对任意向量 z z z,我们可以将其分解为与 u u u 平行的分量 a u au au 和与 u u u 正交的分量 b v bv bv,即 z = a u + b v z = au + bv z=au+bv,那么 Householder 变换会将 z z z 变换为 − a u + b v -au + bv au+bv。这个变换可以理解为镜面反射,它不改变向量在与 u u u 正交的平面上的投影,但将向量沿着 u u u 的方向反射。数学表达式为:

H z = a u + b v → − a u + b v Hz = au + bv \rightarrow -au + bv Hz=au+bvau+bv

  这个性质使得 Householder 变换在一些数值计算的应用中非常有用,例如矩阵三对角化、 QR 分解等。
【计算方法与科学建模】矩阵特征值与特征向量的计算(三):Householder方法及其Python实现

四、乘幂法

四、乘幂法的加速

【计算方法与科学建模】矩阵特征值与特征向量的计算(五):乘幂法的加速(带有原点移位的乘幂法)_第1张图片
【计算方法与科学建模】矩阵特征值与特征向量的计算(五):乘幂法的加速(带有原点移位的乘幂法)_第2张图片
【计算方法与科学建模】矩阵特征值与特征向量的计算(五):乘幂法的加速(带有原点移位的乘幂法)_第3张图片

【计算方法与科学建模】矩阵特征值与特征向量的计算(五):乘幂法的加速(带有原点移位的乘幂法)_第4张图片

占坑:乘幂法的加速具体内容,待明日完善……

你可能感兴趣的:(#,计算方法与科学建模,矩阵,python,线性代数,特征值,特征向量)