- 从0到1:C++ 开启游戏开发奇幻之旅(二)
小周不想卷
艾思科蓝学术会议投稿c
目录游戏开发核心组件设计游戏循环游戏对象管理碰撞检测人工智能(AI)与物理引擎人工智能物理引擎性能优化技巧内存管理优化多线程处理实战案例:开发一个简单的2D射击游戏项目结构设计代码实现总结与展望游戏开发核心组件设计游戏循环游戏循环是游戏运行的核心机制,它就像是游戏的“心脏”,不断地跳动,驱动着游戏世界的运转。在游戏循环中,程序会不断地重复执行一系列的操作,包括处理用户输入、更新游戏状态、进行物理模
- 【Python】解决UnicodeDecodeError: ‘gbk‘ codec can‘t decode byte 0x9A in position xxx: illegal multibyte
云天徽上
python运行报错解决记录pythonnumpy机器学习深度学习pandas
【Python】解决UnicodeDecodeError:‘gbk’codeccan’tdecodebyte0x9Ainpositionxxx:illegalmultibytesequence博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。CSDN人
- 新零售社交电商系统小程序功能开发详细解析
v.15889726201
零售小程序
现在的购物方式是越来越有趣了,新零售社交电商系统是互联网、大数据、人工智能的技术和咱们熟悉的传统零售深度结合后产生的。它整合线上线下渠道及数据,带来全方位、多渠道、个性化购物体验。借助实时库存管理、智能推荐和无缝购物体验等功能,打破传统电商与实体店界限,其具备以下显著特点:一、系统主要功能分销管理独家推广代码机制:在这个新零售社交电商系统里,每个经销商都有一个只属于自己的推广代码。把这个代码分享给
- [碎碎念] 重启学习与博客之旅-我的每日计划
言午coding
碎碎念碎碎念
好久没在写博客了,今天我下定决心,要重新开始。我给自己定了个小目标,从今天起,每天都要写一篇博客,然后发布到CSDN和掘金上。以下是我的计划。一、每天学点新东西以后每天早上,我都得抽出至少一个小时专门用来学新技术。我打算先列个学习清单,把一直想学但没时间学的技术都写上去,然后按照自己的兴趣和工作需要,一项一项地去攻克。比如说,我最近对人工智能和大数据分析特别感兴趣,所以打算每天看点相关的专业书,或
- Python学习笔记 - 探索5种数据类型
Mr数据杨
Python编程基础python数据类型
在当今的数字时代,编程已经成为一种基本技能,不仅适用于软件开发人员,更广泛地应用于数据分析、人工智能、自动化和科学研究等领域。Python作为一种强大且易于学习的编程语言,因其简洁的语法和广泛的应用场景,成为了初学者学习编程的首选语言。在学习Python编程的过程中,理解和掌握数据类型是至关重要的。数据类型决定了程序中可以进行的操作类型,以及如何存储和处理信息。理解不同数据类型的特性和使用场景,不
- 讯飞绘镜(ai生成视频)技术浅析(三):自然语言处理(NLP)
爱研究的小牛
AIGC—视频AIGC—自然语言处理自然语言处理人工智能自然语言处理AIGC深度学习
1.技术架构概述讯飞绘镜的NLP技术架构可以分为以下几个核心模块:语义分析:理解用户输入的文本,提取关键信息(如实体、事件、情感等)。情节理解:分析文本中的故事情节,识别事件序列和逻辑关系。人物关系建模:识别文本中的人物及其关系,构建人物关系图。场景生成:根据情节和人物关系生成场景描述。每个模块都依赖于先进的深度学习模型和算法,以下将逐一详细讲解。2.语义分析语义分析的目标是从用户输入的文本中提取
- 讯飞智作 AI 配音技术浅析(一)
爱研究的小牛
AIGC—技术综述AIGC—概述AIGC—音频人工智能AIGC机器学习深度学习
一、核心技术讯飞智作AI配音技术作为科大讯飞在人工智能领域的重要成果,融合了多项前沿技术,为用户提供了高质量的语音合成服务。其核心技术主要涵盖以下几个方面:1.深度学习与神经网络讯飞智作AI配音技术以深度学习为核心驱动力,通过以下关键模型实现语音合成:Tacotron模型:该模型采用端到端的编码器-解码器架构,将输入文本直接转换为梅尔频谱(Mel-spectrogram),再通过声码器生成语音信号
- DeepSeek-R1:多模态AGI的实践突破与场景革命
热爱分享的博士僧
agi
一、DeepSeek-R1的核心定位DeepSeek-R1是深度求索(DeepSeek)研发的多模态通用人工智能模型,旨在突破单一模态的局限性,实现文本、图像、语音、视频等跨模态信息的深度理解、推理与生成。该模型基于统一的架构设计,通过跨模态对齐与知识共享机制,推动AI在复杂场景中的落地应用,覆盖医疗、工业、教育、娱乐等领域。二、技术架构与创新亮点统一的多模态框架采用Transformer-bas
- DeepSeek R1与OpenAI o1深度对比
码事漫谈
AI人工智能机器学习
文章目录引言技术原理DeepSeekR1OpenAIo1性能表现官方数据推理任务知识密集型任务通用能力价格对比应用场景科研与技术开发自然语言处理(NLP)企业智能化升级教育与培训数据分析与智能决策部署与集成DeepSeekR1OpenAIo1伦理考量DeepSeekR1OpenAIo1未来展望DeepSeekR1OpenAIo1引言在科技飞速发展的当下,人工智能领域中的大型语言模型(LLMs)正以
- 使用 JuiceFS 快照功能实现数据库发布与端到端测试
Juicedata
架构运维
今天的博客来自JuiceFS云服务用户Jerry,他们通过使用JuiceFSsnapshot功能,创新性地实现了数据的版本控制。Jerry,是一家位于北美的科技公司,利用人工智能和机器学习技术,简化用户购买汽车和家庭保险的比较及购买流程。在软件开发领域,严格的测试和受控发布已经成为几十年来的标准做法。但如果我们能将这些原则应用到数据库和数据仓库中会怎样?想象一下,能够为数据基础设施定义一套带有测试
- 关于人工智能(AI)的发展现状和未来趋势的详细分析!
Stanford_1106
学习关于AI人工智能c++微信开放平台微信小程序微信公众平台aitwitter
成长路上不孤单【14后///C++爱好者///持续分享所学///如有需要欢迎收藏转发///】今日将继续分享关于人工智能(AI)的发展现状和趋势的相关内容!关于【人工智能(AI)的发展现状和未来趋势】目录:一、AI人工智能行业背景二、AI人工智能产业细分领域三、AI人工智能产业链结构四、AI人工智能行业发展现状五、AI人工智能行业未来发展趋势预测六、AI人工智能行业前景七、AI人工智能行业目前存
- 本地部署 DeepSeek-R1 大模型
网络安全我来了
人工智能AI人工智能
本地部署DeepSeek-R1大模型指南1.引言1.1DeepSeek-R1模型简介在人工智能的世界里,大型语言模型(LLM)正如一座巨大的宝库,里面储存着丰富的信息和无限的潜力。而DeepSeek-R1,就像那扇打开智慧之门的钥匙。它是一款专注于数学、代码和自然语言推理任务的高性能AI推理模型。许多用户希望能在本地环境中自由操作这些强大的模型,因为这不仅关乎数据隐私,还能满足定制化部署的需求。这
- 简述Caffe、TensorFlow、TensorFlow Lite、ONNX、DarkNet、PyTorch 等模型
科学的发展-只不过是读大自然写的代码
断纱检测caffetensorflowpytorch
以下是对Caffe、TensorFlow、TensorFlowLite、ONNX、DarkNet和PyTorch等模型的简述:Caffe:Caffe(ConvolutionArchitectureForFeatureExtraction)是一个用于特征抽取的卷积框架,它是一个清晰、可读性高且快速的深度学习框架。Caffe由加州伯克利大学的贾扬清开发,起初是一个用于深度卷积网络的Python框架(无
- 【C语言基础习题】C语言练习题——bite 寒假班作业(3)
拾贰_C
c语言开发语言
AI是在帮助开发者还是取代他们?在软件开发领域,生成式人工智能(AIGC)正在改变开发者的工作方式。无论是代码生成、错误检测还是自动化测试,AI工具正在成为开发者的得力助手。然而,这也引发了对开发者职业前景和技能需求变化的讨论。AI究竟是在帮助开发者还是取代他们?提醒:在发布作品前,请把不需要的内容删掉。方向一:AI工具现状提示:介绍当前市场上的主要AI开发工具,如GitHubCopilot、Ta
- 超实用的Python深度学习教程 - 基于TensorFlow和Keras框架(含实例及完整代码)
AI_DL_CODE
人工智能python深度学习tensorflow
一、深度学习概述(一)深度学习的定义与发展历程深度学习在当今的科技领域占据着极为重要的地位。它是人工智能的一个重要分支,其定义为通过构建具有很多层的神经网络模型,让计算机自动从大量数据中学习复杂模式的一种技术。深度学习的发展历程可谓波澜壮阔,早期它源于对人工神经网络的研究,从简单的感知机模型开始。在发展初期,由于计算资源的限制以及数据量的不足等因素,发展较为缓慢。然而,随着计算机技术的飞速发展,尤
- 读算法简史:从美索不达米亚到人工智能时代02古老的算法
躺柒
算法人工智能巴比伦苏美尔埃及欧几里得
1.苏美尔1.1.位于苏美尔地区的乌鲁克,是最古老的城市之一1.2.文字似乎是从印刻在湿黏土陶筹上的简单记号发展而来的1.2.1.陶筹是用来记录库存与货物交换的1.2.2.一个陶筹可能等同于一定数量的获得物或者一定头数的牲畜1.3.楔形(cuneiform)文字1.3.1.这个名字源于文字独特的“楔形”形状,那是用芦苇笔在湿黏土上压印出来的1.3.2.符号由几何形状的楔形图案组成1.3.3.铭文是
- 读人工智能时代与人类未来笔记11地缘
躺柒
读人工智能时代与人类未来人工智能笔记百度机器学习GPT-3人类
1.网络平台和地缘zz1.1.新兴的网络平台地缘zz学构成了国际战略的一个重要的新方面,而zf并不是唯一的参与者1.2.本国的经济和社会生活的各个方面竟然要在由其他潜在竞争gj设计的人工智能所驱动的网络平台上展开,其隐含意义令人不安1.3.米国和东大的全国性网络平台能够从一个大洲级别的地理规模起步,让它们的公司能够更容易获得所需投资,以便继续扩展至其他语言地区1.4.一个社会创造的人工智能赋能网络
- 读算法简史:从美索不达米亚到人工智能时代01算法机器
躺柒
算法java开发语言排序算法插入排序快速排序
1.算法1.1.algorithm1.1.1.该词起源于阿拉伯语al-Kwārizmī1.1.1.1.意为“来自花剌子模(现称‘希瓦’)的人”1.1.1.2.一位9世纪数学家的名字,其全名是阿布·贾法尔·穆罕默德·伊本·穆萨(AbūJa’farMuhammadibnMūsa)1.1.1.2.1.他所著的代数和算术著作被广泛翻译1.2.在计算或其他解决问题的操作中所要遵循的处理过程或一组规则,特别是
- 2025年美赛数学建模2025 MCM Problem A: Testing Time: The Constant Wear On Stairs A题 测试时间:楼梯上的持续磨损 代码解析
2025年数学建模美赛
2025年美赛MCM/ICM数学建模2025年数学建模美赛2025数学建模美赛A题2025楼梯上的持续磨损matlab代码
目录Python1.数据预处理与特征工程数据标准化与特征构建2.行进方向偏好分析深度神经网络(DNN)用于方向性分析3.多人同时使用分析卷积神经网络(CNN)用于磨损模式识别4.时间序列分析LSTM模型用于时间序列预测matlab代码Python我们将采用更多的机器学习和深度学习技术,例如图像处理、深度神经网络(DNN)、卷积神经网络(CNN)等,并结合不同的算法进行更深入的分析。1.数据预处理与
- Llama大型语言模型原理详解
摆烂大大王
llamallama语言模型人工智能
Llama大型语言模型是一种基于深度学习的自然语言处理模型,它在文本生成、问答、摘要等多种NLP任务中展现出强大的性能。本文将详细解析Llama模型的原理,包括其结构、训练过程以及工作机制,帮助读者深入理解这一先进的模型。一、模型结构Llama模型采用了一种基于Transformer的架构,这是一种由多个自注意力机制和前馈神经网络组成的深度神经网络结构。Transformer架构通过自注意力机制捕
- 利用ChatGPT阅读文献:指南与技巧
摆烂大大王
chatgptMathorCup数学建模chatgpt论文阅读人工智能学习
阅读文献对于学术研究和深度学习至关重要。ChatGPT作为一款高级人工智能聊天机器人,可以帮助用户更高效地阅读和理解文献。以下是如何利用ChatGPT阅读文献的一些指南和技巧。1.文献检索在你阅读文献之前,首先需要找到相关文献。可以使用如下命令让ChatGPT帮助你进行文献检索:/findpapers关键词或主题例如,如果你需要寻找关于人工智能在医疗领域应用的文献,可以输入:/findpapers
- 目标检测入门教程:使用Python实现目标检测算法
晨曦之光,优美芝麻
目标检测python算法机器学习-深度学习
目标检测是计算机视觉领域中的重要任务,它旨在识别和定位图像或视频中的特定对象。本教程将介绍如何使用Python编程语言实现目标检测算法。我们将使用一种广泛应用的目标检测算法——基于深度学习的单阶段检测器YOLO(YouOnlyLookOnce)的最新版本YOLOv4作为示例。在开始之前,请确保您已经安装了Python和以下必要的库:NumPy、OpenCV和PyTorch。您可以使用pip命令来安
- 【Java】已解决:`java.lang.NoClassDefFoundError`
屿小夏
java开发语言
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- 【Java】已解决java.lang.NoSuchMethodException异常
屿小夏
javapython开发语言
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- 五类推理(逻辑推理、概率推理、图推理、基于深度学习的推理)的开源库 (一)
由数入道
深度学习开源人工智能
在开发中,有一些开源库可以实现不同类型的推理,包括逻辑推理、概率推理、图推理、基于深度学习的推理等。以下是五类推理(逻辑推理、概率推理、图推理、基于深度学习的推理)的现成开源库,它们各自的功能、特点和适用场景的详细介绍,并进行对比分析。1.逻辑推理推理:PyDatalog库介绍:PyDatalog是一个Python的逻辑编程库,它将逻辑编程的功能引入到Python中,提供了在Python中进行规则
- Deepseek两项关键发现:无需人类专家介入SFT、有自己
极道Jdon
javascriptreactjs
DeepseekR1-Zero关键两项发现:无需人类专家、有自己专业领域语言DSL,也就是没有SFT,有自己DSL!ARCPrize基金会对DeepSeek发布的R1-Zero和R1“推理”系统的分析。ARCPrize基金是谁?ARCPrize基金会旨在定义、衡量并激励新的AGI(通用人工智能)想法。目前尚未实现AGI,主流AI行业和公众普遍认为通过扩大纯语言模型(LLM)的预训练规模就能实现突破
- 杨立昆退休?中国Deepseek超Llama 4触发Meta
极道Jdon
javascriptreactjs
[昨天,人工智能领域发生了一些事情:杨立昆领导的Meta生成式人工智能部门(Metagenaiorg)陷入了恐慌模式。杨立昆是Meta(原Facebook)的首席人工智能科学家,同时也是纽约大学的教授。杨立昆因其在深度学习领域的开创性工作而获得了图灵奖(TuringAward),这是计算机科学领域的最高荣誉之一。恐慌模式始于DeepseekV3,它在性能测试中已经超过了Llama4。更让人尴尬的是
- 书生浦语第五期
晴斋1216
语言模型
基础作业完成以下任务,并将实现过程记录截图:配置lmdeploy运行环境下载internlm-chat-1.8b模型以命令行方式与模型对话视频链接文档链接基础知识学习模型部署在软件工程中,部署通常指的是将开发完毕的软件投入使用的过程。在人工智能领域,模型部署是实现深度学习算法落地应用的关键步骤。简单来说,模型部署就是将训练好的深度学习模型在特定环境中运行的过程。目前大模型部署面临的挑战计算量巨大内
- 开源大模型(LLM)下载
baidu_20834545
语言模型
由于huggingface等国外网址无法访问或限制等问题,下载不了或下载速度慢。可以尝试从modespace(魔搭社区)下载。1、找到对应的模型文件,比如Meta-Llama-3-8B,然后找到下载入口2、点击模型下载,有2种下载方式,这里我们通过git下载(注意由于模型文件一般都比较大,直接使用gitclone下载时会有问题,超大文件下载后数据会缺失。可通过gitlfsclone命令)3、打开l
- 斯坦福吴恩达-深度学习和机器学习全套视频+课件!
Alexquyun
人工智能机器学习深度学习python
这些课程专为已有一定基础(基本的编程知识,熟悉Python、对机器学习有基本了解),想要尝试进入人工智能领域的计算机专业人士准备。介绍显示:“深度学习是科技业最热门的技能之一,本课程将帮你掌握深度学习。”学生将可以学习到深度学习的基础,学会构建神经网络,并用在包括吴恩达本人在内的多位业界顶尖专家指导下创建自己的机器学习项目。DeepLearningSpecialization对卷积神经网络(CNN
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比