用AI制作训练数据集

用AI制作训练数据集_第1张图片

本节内容我们使用SAM将边界框转换为分割数据集,这对于实例分割数据集的制作非常有用,下面我会一步步给出我的代码,希望对你有用。

有兴趣的朋友可以研究一下这本书,详细的介绍了数据集制作到分割的实际项目应用!

步骤 1. 安装与设置

import torch          import torchvision          print("PyTorch version:", torch.__version__)          print("Torchvision version:", torchvision.__version__)          print("CUDA is available:", torch.cuda.is_available())          import sys          !{sys.executable} -m pip install opencv-python matplotlib          !{sys.executable} -m pip install 'git+https://github.com/facebookresearch/segment-anything.git'                   !mkdir images          !wget -P images https://raw.githubusercontent.com/facebookresearch/segment-anything/main/notebooks/images/truck.jpg          !wget -P images https://raw.githubusercontent.com/facebookresearch/segment-anything/main/notebooks/images/groceries.jpg                   !wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth
import numpy as np          import torch          import matplotlib.pyplot as plt          import cv2                   def show_mask(mask, ax, random_color=False):              if random_color:                  color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)              else:                  color = np.array([30/255, 144/255, 255/255, 0.6])              h, w = mask.shape[-2:]              mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)              ax.imshow(mask_image)                       def show_points(coords, labels, ax, marker_size=375):              pos_points = coords[labels==1]              neg_points = coords[labels==0]              ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)              ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)                         def show_box(box, ax):              x0, y0 = box[0], box[1]              w, h = box[2] - box[0], box[3] - box[1]              ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))                             import sys          sys.path.append("..")          from segment_anything import sam_model_registry, SamPredictor                   sam_checkpoint = "sam_vit_h_4b8939.pth"          model_type = "vit_h"                   device = "cuda"                   sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)          sam.to(device=device)                   predictor = SamPredictor(sam)
image = cv2.imread('/notebooks/images/000027.jpg')          image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

         

用AI制作训练数据集_第2张图片

图像分割

步骤二、 获取mask

通过将 yolo 格式转换为 SAM 期望的边界框格式,我们得到了这些掩码的边界框。这是这张图片的边界框。对yolo熟悉的朋友对这个应该非常熟悉!

bounding_boxes = [[209, 532, 262, 626], [256, 444, 300, 531], [213, 258, 362, 401], [200, 96, 376, 623], [247, 172, 371, 265], [397, 409, 496, 484], [184, 261, 253, 327]]
用于将这些框输入到 SAM 预测器中。我们将它们转换为张量。
input_boxes = torch.tensor(bounding_boxes, device=predictor.device)
这样做之后提取新的mask
transformed_boxes = predictor.transform.apply_boxes_torch(input_boxes, image.shape[:2])          masks, _, _ = predictor.predict_torch(              point_coords=None,              point_labels=None,              boxes=transformed_boxes,              multimask_output=False,          )          plt.figure(figsize=(10, 10))          plt.imshow(image)          for mask in masks:              show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)          for box in input_boxes:              show_box(box.cpu().numpy(), plt.gca())          plt.axis('off')          plt.show()

用AI制作训练数据集_第3张图片

这是没有人遮罩,它把所有东西都染成绿色

用AI制作训练数据集_第4张图片

你可能感兴趣的:(python,numpy,开发语言)