- 【手把手教你】训练YOLOv8分割模型
是啊洋呀
YOLO
1.下载文件在github上下载YOLOV8模型的文件,搜索yolov8,star最多这个就是2.准备环境环境要求python>=3.8,PyTorch>=1.8,自行安装ptyorch环境即可2.制作数据集制作数据集,需要使用labelme这个包,安装命令为pipinstalllabelme-ihttps://pypi.tuna.tsinghua.edu.cn/simple然后启动labelme
- labelImg和labelme区别
FL1623863129
Pythonpython
LabelImg和LabelMe是两种常用的标注工具,用于创建标注数据集以供机器学习和计算机视觉任务使用。虽然它们都具有相似的目标,即方便用户进行图像标注,但在某些方面存在一些区别。下面将介绍LabelImg和LabelMe的区别及联系,同时提供一些关于它们的详细信息。LabelImgLabelImg是一个开源的图像标注工具,专门用于创建2D边界框标注,常用于目标检测项目。它基于Python和Qt
- 二、yolov8图像标注和模型训练
Dakchueng
win10+yolov8分割C++TRT和vino部署人工智能深度学习YOLO
图像标注1、按照以下的格式,将图片放入images中。(不限制文件夹路径)2、然后下载labelme标注工具,链接;按照我之前写的这篇博客进行操作,链接,如果没有下载到,可以联系我发给你。jsons转txt格式1、将以下代码用pycharm打开,修改输入路径、输出路径和classList列表。(classList就是标注的时候定义的类别)//importjsonimportosimportglob
- labelme批量转换工具labem_json_to_datset批量转换器
未来自主研究中心
labelme批量转换工具是全球首款可视化工具,可以快速将json文件转为5个文件,看下图软件界面使用步骤:(1)选择文件夹或者选择多个文件可以自动导入列表,如果嫌麻烦可以直接拖拽到列表框即可(2)点击开始转换等待完成即可注意:json里面存储的图片越大,转换越慢,因为json图片的数据是base64格式需要反转为图片,所以耗时看json里面图片的大小数据参考资料来源:FIRC官网:https:/
- yolov8之训练、验证、预测、导出
Jumy_S
YOLO
yolov8之训练、验证、预测、导出yolov8之训练、验证、预测、导出yolov8之训练、验证、预测、导出链接:https://pan.baidu.com/s/1_9hI8ZshNCJSMJVXNTVxbQ?pwd=1234提取码:1234一YoloV8数据集制作1.labelme的使用2.数据集转为yolo格式二使用yolov8进行训练、验证、预测、导出1.图像分类2.图像检测3.实例分割1.
- YoloV8之labelme数据集转为yolo格式
Jumy_S
YOLO
YoloV8之数据集转为yolo格式1.分类数据集制作2.检测数据集制作3.分割数据集制作1.分类数据集制作1.1首先创建存放分类数据的文件夹-my_dataset1.2然后在其文件夹分别创建train、val两个子文件夹1.3train和val文件夹下存放各个类别的缺陷图像2.检测数据集制作path:D:\BaiduPan\labelmeCatAndDogtrain:images/trainva
- 关节点检测
Array902
深度学习YOLO
https://www.bilibili.com/video/BV19g4y1777q/?p=2&spm_id_from=pageDriver关节点检测全流程YOLO:单阶段,快;MMPose:双阶段,准;标注工具Labelme用Labelme标注样本数据集
- 数据集标注工具anylabeling解析
交换喜悲
深度学习基础知识人工智能数据库深度学习图像处理
最近帮助其他课题组的学姐标注数据集,课题组使用的是anylabeling软件,相比于其他数据标注软件,例如labelme等,anylabeling软件使用时可以选择不同的模型,可以做到在图片上点几个点的轮廓,模型将自动识别出大致轮廓,可以大大节省时间,提高效率。视频教程:https://www.bilibili.com/video/BV1mN411C7SC/?spm_id_from=333.788
- 老版本labelme如何不保存imagedata
Diros1g
labelme标注语义3分割
我的版本是3.16,默认英文且不带取消保存imagedata的选项。最简单粗暴的方法就是在·json文件保存时把传递过来的imagedata数据设定为None,方法如下:找到labelme的源文件,例如:D:\conda\envs\deeplab\Lib\site-packages\labelme输出json的文件为label_file.py160行改成如下形式即可
- labelme之批量生成掩码图(复制代码直接可用)
黑夜寻白天
跑模型可能会用到的就方便找语义分割python图像处理
前言当你看到这篇文章的时候,说明你在面临着标数据,这个巨烦的工作啦,我表示我懂,很难受。然后labelme又不支持批量转换的,看网上的教程好多说要找到labelme的某个文件呀,然后在复制粘贴上去呀,在用命令行生成json文件夹的,老麻烦了,虽然我以前就是这么干的,但是干着干着就想偷懒了,所以自己翻看了labelme的代码,抽取出来用,自己用程序一步到位。批量转换代码代码是从labelme中抽取出
- 分离image和txt json等
翟羽嚄
工具类jsonpython前端
Labelme这个垃圾软件会把图像和标签放到一个文件夹,十分不方便。需要分离一下#分离jpgtxt和json文件importos.pathimportxml.etree.ElementTreeasETfromxml.dom.minidomimportDocumentimportosimportos.pathfromPILimportImageimportosimportshutilclass_na
- Pycharm配置conda虚拟环境出现unsupported
徐徐祥来-小黑皮
pycharmcondaide
1.最近小黑皮在学习Mask-Rcnn框架,初步计划是先跑通一遍,再去深入学习。起初我的anaconda里已经有一个支持做图像处理的虚拟环境了。2.tensorflow-gpu就是之前配置好的环境。3.但是在跑的过程中,出现了tensorflow和keras版本冲突的问题,我又不想降级。本身里面的包就比较多。4.所以我索性创建一个新的虚拟环境,即mask-rcnn。5.在pycharm中配置con
- yolov8训练自己的关键点检测模型
翟羽嚄
深度学习YOLO
参考:https://blog.csdn.net/weixin_38807927/article/details/135036450标注数据集安装labelmepipinstalllabelme-ihttps://pypi.tuna.tsinghua.edu.cn/simple如果报错$labelme2024-01-3103:16:20,636[INFO]__init__:get_config:6
- 基于PaddleDetection目标检测labelme标注自动获取
Dandelion_2
深度学习目标检测python人工智能
在百度的PaddleDetection项目的基础上实现目标检测labelme标注的自动获取,需要先训练一个模型,然后通过这个模型去标注,最后用labelme进行微调from__future__importabsolute_importfrom__future__importdivisionfrom__future__importprint_functionimportosimportsysimpo
- 关键点标注 labelme 修改失败
AI视觉网奇
python基础人工智能
竟然没有发现好用的人体关键点2d标注工具,准备尝试修改labelme没改成功,以下是调研的结果:调用:labelme/shape.pydefpaint(self,painter):划线的代码:painter.drawPath(line_path)不重要painter.fillPath(vrtx_path,self._vertex_fill_color)画顶点:line_path.moveTo(se
- [自用代码]labelme--人脸关键点标注--json转xml--xml转txt
deyiwang89
自用代码jsonxmlpython
文章目录1.labelme标注人脸:2解析json文件3.xml转换成txt1.labelme标注人脸:(翻个白眼先)用“Createrectangle”和“CreatePoint”,类别分别为“face,le,re,no,lm,rm”(脸,左眼,右眼,鼻子,左嘴角,右嘴角);标注好后会生成json文件内容具体如下:{"version":"5.3.1","flags":{},"shapes":[{
- [GDMEC-无人机遥感研究小组]无人机遥感小组-000-数据集制备
deyiwang89
GDMEC-无人机遥感研究小组无人机
基于labelme的无人机语义分割数据集制备文章目录基于labelme的无人机语义分割数据集制备1.数据获取2.安装labelme3.利用labelme进行标注1.数据获取数据集制备需要利用无人机飞行并采集标注。使用录制模式,镜头垂直向下进行拍摄,得到DJI_XXXX.MP4文件,利用如下代码,可以按照如下代码得到对应的图片(注,本代码来自另一博主,非本人原创)importcv2importos#
- 语义分割 | 基于 VGG16 预训练网络和 Segnet 架构实现迁移学习
源于花海
深度学习迁移学习深度学习人工智能
Hi,大家好,我是源于花海。本文主要使用数据标注工具Labelme对猫(cat)和狗(dog)这两种训练样本进行标注,使用预训练模型VGG16作为卷积基,并在其之上添加了全连接层。基于标注样本的信息和预训练模型的特征提取能力以及Segnet架构,训练自己构建的语义分割网络,从而实现迁移学习。目录一、导入必要库二、数据集准备2.1JSON转换成PNG2.2生成JPG图片和mask标签的名称文本2.3
- YOLO系列
Array902
YOLOpython深度学习
深度学习经典检测方法two-stage(两阶段):Faster-rcnn\Mask-Rcnn系列(两阶段即多了一步预选操作)one-stage(单阶段):YOLO系列(直接处理,不需要对数据进行预选)one-stage:最核心的优势:速度非常快,适合做实时监测任务!但是缺点也是有的,效果通常情况下不会太好!(速度越快效果越差,二者相互有些矛盾)mAP:效果好坏FPS:速度快慢two-stage:速
- labelme读取文件顺序
huahuahuahhhh
python
labelme版本4.5.10labelme的目录结构labelme通过在__main__.py中调用app.py,启动程序读取文件列表的部分在app.py的imageList函数中defimageList(self):lst=[]foriinrange(self.fileListWidget.count()):item=self.fileListWidget.item(i)lst.append(
- 全流程机器视觉工程开发(一)环境准备,paddledetection和labelme
Leventure_轩先生
不涉及理论的简易机器学习笔记机器学习笔记windowscnn人工智能
前言我现在在准备做一个全流程的机器视觉的工程,之前做了很多理论相关的工作。大概理解了机器视觉的原理,然后大概了解了一下,我发现现在的库其实已经很发展了,完全不需要用到非常多的理论,只需要知道开发过程就可以了,甚至paddlex已经直接有了傻瓜式模型训练的软件,所以我现在准备来做一个全流程机器视觉工程开发,不涉及过多理论。准备现在准备一下机器视觉工程的前情提要。我准备使用paddledetectio
- 【Ubuntu18.04安装Labelme】
Dymc
安装笔记pythonubuntulabelme
Ubuntu18.04安装Labelme1安装Anaconda并创建conda环境2安装依赖3安装Labelme4安装验证1安装Anaconda并创建conda环境Anaconda3安装教程:https://blog.csdn.net/dally2/article/details/108206234"ctrl+alt+t"快捷键打开终端,创建conda环境:condacreate-nlabelme
- 图像分类 | 基于 Labelme 数据集和 VGG16 预训练模型实现迁移学习
源于花海
深度学习分类迁移学习深度学习计算机视觉
Hi,大家好,我是源于花海。本文主要使用数据标注工具Labelme对自行车(bike)和摩托车(motorcycle)这两种训练样本进行标注,使用预训练模型VGG16作为卷积基,并在其之上添加了全连接层。基于标注样本的信息和预训练模型的特征提取能力,训练自己构建的图像分类器,从而实现迁移学习。目录一、导入必要库二、定义目录变量三、数据预处理--数据增强+标签处理1.定义图像数据生成器2.标注样本的
- 深度学习 基于aistudio平台从数据标注开始实现语义分割任务
摸鱼的机器猫
深度学习深度学习计算机视觉python
从0基础开始进行深度学习1、数据处理1.1数据标注准备数据标注软件使用labelme进行数据标注,labelme的下载地址为:https://download.csdn.net/download/a486259/16097828下载放到桌面,双击即可运行。软件界面如下所示:准备原始数据数据的获取途径有很多种方式,这里拟采用从谷歌地球上截图的形式获取原始数据。进行数据标注根据下图提升,在labelm
- Python将Labelme文件的真实框和预测框绘制到图片上(v2.0)
FriendshipT
Python日常小操作python开发语言YOLO人工智能目标检测Labelme
Python将Labelme文件的真实框和预测框绘制到图片上(v2.0)前言前提条件相关介绍实验环境Python将Labelme文件的标注信息绘制到图片上代码实现输出结果前言此版代码,相较于Python将Labelme文件的真实框和预测框绘制到图片上,将无标注文件和无预测结果的数据集处理方法(异常跳过),也考虑进去了。由于本人水平有限,难免出现错漏,敬请批评改正。更多精彩内容,可点击进入Pytho
- 【AI】大模型训练的常用图像数据集
giszz
学习笔记人工智能人工智能
目录一、常用的数据集1.1ImageNet1.2PASCALVOC1.3MSCOCO1.4KITTI1.5LabelMe二、一些垂直领域的数据集如鱼类2.1FishSpeciesDataset2.2Large-scaleFishDatasetsforClassificationandSegmentation2.3FishMarketDataset2.4fish4knowledge三、找数据集和基本
- 中文文档版面分析
鱼遇雨愈愉
ocr
PDF中文论文版面分析,目前看来训练结果较好,推理结果如下图所示。模型使用Mask-RCNN,数据集使用公开数据。
- 实现目标检测中的数据格式自由(labelme json、voc、coco、yolo格式的相互转换)
万里鹏程转瞬至
pythonC++与C#实践目标检测jsonYOLOcoco
在进行目标检测任务中,存在labelmejson、voc、coco、yolo等格式。labelmejson是由anylabeling、labelme等软件生成的标注格式、voc是通用目标检测框(mmdetection、paddledetection)所支持的格式,coco是通用目标检测框(mmdetection、paddledetection)所支持的格式,yolo格式是yolo系列项目中所支持的
- 【技能---labelme软件的安装及其使用--ubuntu】
fyc300
ubuntulinuxpython笔记深度学习
文章目录概要Labelme是什么?Labelme能干啥?Ubuntu20.04安装Labelme1.Anaconda的安装2.Labelme的安装3.Labelme的使用概要图像检测需要自己的数据集,为此需要对一些数据进行数据标注,这里提供了一种图像的常用标注工具——labelme。下面对其进行有一些介绍:Labelme是什么?Labelme是一个图形界面的图像标注软件。其的设计灵感来自于http
- Python将Labelme文件的真实框和预测框绘制到图片上
FriendshipT
Python日常小操作python开发语言Labelmejson目标检测
Python将Labelme文件的真实框和预测框绘制到图片上前言前提条件相关介绍实验环境Python将Labelme文件的标注信息绘制到图片上代码实现输出结果前言由于本人水平有限,难免出现错漏,敬请批评改正。更多精彩内容,可点击进入Python日常小操作专栏、OpenCV-Python小应用专栏、YOLO系列专栏、自然语言处理专栏或我的个人主页查看YOLOv8Ultralytics:使用Ultra
- 怎么样才能成为专业的程序员?
cocos2d-x小菜
编程PHP
如何要想成为一名专业的程序员?仅仅会写代码是不够的。从团队合作去解决问题到版本控制,你还得具备其他关键技能的工具包。当我们询问相关的专业开发人员,那些必备的关键技能都是什么的时候,下面是我们了解到的情况。
关于如何学习代码,各种声音很多,然后很多人就被误导为成为专业开发人员懂得一门编程语言就够了?!呵呵,就像其他工作一样,光会一个技能那是远远不够的。如果你想要成为
- java web开发 高并发处理
BreakingBad
javaWeb并发开发处理高
java处理高并发高负载类网站中数据库的设计方法(java教程,java处理大量数据,java高负载数据) 一:高并发高负载类网站关注点之数据库 没错,首先是数据库,这是大多数应用所面临的首个SPOF。尤其是Web2.0的应用,数据库的响应是首先要解决的。 一般来说MySQL是最常用的,可能最初是一个mysql主机,当数据增加到100万以上,那么,MySQL的效能急剧下降。常用的优化措施是M-S(
- mysql批量更新
ekian
mysql
mysql更新优化:
一版的更新的话都是采用update set的方式,但是如果需要批量更新的话,只能for循环的执行更新。或者采用executeBatch的方式,执行更新。无论哪种方式,性能都不见得多好。
三千多条的更新,需要3分多钟。
查询了批量更新的优化,有说replace into的方式,即:
replace into tableName(id,status) values
- 微软BI(3)
18289753290
微软BI SSIS
1)
Q:该列违反了完整性约束错误;已获得 OLE DB 记录。源:“Microsoft SQL Server Native Client 11.0” Hresult: 0x80004005 说明:“不能将值 NULL 插入列 'FZCHID',表 'JRB_EnterpriseCredit.dbo.QYFZCH';列不允许有 Null 值。INSERT 失败。”。
A:一般这类问题的存在是
- Java中的List
g21121
java
List是一个有序的 collection(也称为序列)。此接口的用户可以对列表中每个元素的插入位置进行精确地控制。用户可以根据元素的整数索引(在列表中的位置)访问元素,并搜索列表中的元素。
与 set 不同,列表通常允许重复
- 读书笔记
永夜-极光
读书笔记
1. K是一家加工厂,需要采购原材料,有A,B,C,D 4家供应商,其中A给出的价格最低,性价比最高,那么假如你是这家企业的采购经理,你会如何决策?
传统决策: A:100%订单 B,C,D:0%
&nbs
- centos 安装 Codeblocks
随便小屋
codeblocks
1.安装gcc,需要c和c++两部分,默认安装下,CentOS不安装编译器的,在终端输入以下命令即可yum install gccyum install gcc-c++
2.安装gtk2-devel,因为默认已经安装了正式产品需要的支持库,但是没有安装开发所需要的文档.yum install gtk2*
3. 安装wxGTK
yum search w
- 23种设计模式的形象比喻
aijuans
设计模式
1、ABSTRACT FACTORY—追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了。麦当劳和肯德基就是生产鸡翅的Factory 工厂模式:客户类和工厂类分开。消费者任何时候需要某种产品,只需向工厂请求即可。消费者无须修改就可以接纳新产品。缺点是当产品修改时,工厂类也要做相应的修改。如:
- 开发管理 CheckLists
aoyouzi
开发管理 CheckLists
开发管理 CheckLists(23) -使项目组度过完整的生命周期
开发管理 CheckLists(22) -组织项目资源
开发管理 CheckLists(21) -控制项目的范围开发管理 CheckLists(20) -项目利益相关者责任开发管理 CheckLists(19) -选择合适的团队成员开发管理 CheckLists(18) -敏捷开发 Scrum Master 工作开发管理 C
- js实现切换
百合不是茶
JavaScript栏目切换
js主要功能之一就是实现页面的特效,窗体的切换可以减少页面的大小,被门户网站大量应用思路:
1,先将要显示的设置为display:bisible 否则设为none
2,设置栏目的id ,js获取栏目的id,如果id为Null就设置为显示
3,判断js获取的id名字;再设置是否显示
代码实现:
html代码:
<di
- 周鸿祎在360新员工入职培训上的讲话
bijian1013
感悟项目管理人生职场
这篇文章也是最近偶尔看到的,考虑到原博客发布者可能将其删除等原因,也更方便个人查找,特将原文拷贝再发布的。“学东西是为自己的,不要整天以混的姿态来跟公司博弈,就算是混,我觉得你要是能在混的时间里,收获一些别的有利于人生发展的东西,也是不错的,看你怎么把握了”,看了之后,对这句话记忆犹新。 &
- 前端Web开发的页面效果
Bill_chen
htmlWebMicrosoft
1.IE6下png图片的透明显示:
<img src="图片地址" border="0" style="Filter.Alpha(Opacity)=数值(100),style=数值(3)"/>
或在<head></head>间加一段JS代码让透明png图片正常显示。
2.<li>标
- 【JVM五】老年代垃圾回收:并发标记清理GC(CMS GC)
bit1129
垃圾回收
CMS概述
并发标记清理垃圾回收(Concurrent Mark and Sweep GC)算法的主要目标是在GC过程中,减少暂停用户线程的次数以及在不得不暂停用户线程的请夸功能,尽可能短的暂停用户线程的时间。这对于交互式应用,比如web应用来说,是非常重要的。
CMS垃圾回收针对新生代和老年代采用不同的策略。相比同吞吐量垃圾回收,它要复杂的多。吞吐量垃圾回收在执
- Struts2技术总结
白糖_
struts2
必备jar文件
早在struts2.0.*的时候,struts2的必备jar包需要如下几个:
commons-logging-*.jar Apache旗下commons项目的log日志包
freemarker-*.jar  
- Jquery easyui layout应用注意事项
bozch
jquery浏览器easyuilayout
在jquery easyui中提供了easyui-layout布局,他的布局比较局限,类似java中GUI的border布局。下面对其使用注意事项作简要介绍:
如果在现有的工程中前台界面均应用了jquery easyui,那么在布局的时候最好应用jquery eaysui的layout布局,否则在表单页面(编辑、查看、添加等等)在不同的浏览器会出
- java-拷贝特殊链表:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
bylijinnan
java
public class CopySpecialLinkedList {
/**
* 题目:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
拷贝pNext指针非常容易,所以题目的难点是如何拷贝pRand指针。
假设原来链表为A1 -> A2 ->... -> An,新拷贝
- color
Chen.H
JavaScripthtmlcss
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <HTML> <HEAD>&nbs
- [信息与战争]移动通讯与网络
comsci
网络
两个坚持:手机的电池必须可以取下来
光纤不能够入户,只能够到楼宇
建议大家找这本书看看:<&
- oracle flashback query(闪回查询)
daizj
oracleflashback queryflashback table
在Oracle 10g中,Flash back家族分为以下成员:
Flashback Database
Flashback Drop
Flashback Table
Flashback Query(分Flashback Query,Flashback Version Query,Flashback Transaction Query)
下面介绍一下Flashback Drop 和Flas
- zeus持久层DAO单元测试
deng520159
单元测试
zeus代码测试正紧张进行中,但由于工作比较忙,但速度比较慢.现在已经完成读写分离单元测试了,现在把几种情况单元测试的例子发出来,希望有人能进出意见,让它走下去.
本文是zeus的dao单元测试:
1.单元测试直接上代码
package com.dengliang.zeus.webdemo.test;
import org.junit.Test;
import o
- C语言学习三printf函数和scanf函数学习
dcj3sjt126com
cprintfscanflanguage
printf函数
/*
2013年3月10日20:42:32
地点:北京潘家园
功能:
目的:
测试%x %X %#x %#X的用法
*/
# include <stdio.h>
int main(void)
{
printf("哈哈!\n"); // \n表示换行
int i = 10;
printf
- 那你为什么小时候不好好读书?
dcj3sjt126com
life
dady, 我今天捡到了十块钱, 不过我还给那个人了
good girl! 那个人有没有和你讲thank you啊
没有啦....他拉我的耳朵我才把钱还给他的, 他哪里会和我讲thank you
爸爸, 如果地上有一张5块一张10块你拿哪一张呢....
当然是拿十块的咯...
爸爸你很笨的, 你不会两张都拿
爸爸为什么上个月那个人来跟你讨钱, 你告诉他没
- iptables开放端口
Fanyucai
linuxiptables端口
1,找到配置文件
vi /etc/sysconfig/iptables
2,添加端口开放,增加一行,开放18081端口
-A INPUT -m state --state NEW -m tcp -p tcp --dport 18081 -j ACCEPT
3,保存
ESC
:wq!
4,重启服务
service iptables
- Ehcache(05)——缓存的查询
234390216
排序ehcache统计query
缓存的查询
目录
1. 使Cache可查询
1.1 基于Xml配置
1.2 基于代码的配置
2 指定可搜索的属性
2.1 可查询属性类型
2.2 &
- 通过hashset找到数组中重复的元素
jackyrong
hashset
如何在hashset中快速找到重复的元素呢?方法很多,下面是其中一个办法:
int[] array = {1,1,2,3,4,5,6,7,8,8};
Set<Integer> set = new HashSet<Integer>();
for(int i = 0
- 使用ajax和window.history.pushState无刷新改变页面内容和地址栏URL
lanrikey
history
后退时关闭当前页面
<script type="text/javascript">
jQuery(document).ready(function ($) {
if (window.history && window.history.pushState) {
- 应用程序的通信成本
netkiller.github.com
虚拟机应用服务器陈景峰netkillerneo
应用程序的通信成本
什么是通信
一个程序中两个以上功能相互传递信号或数据叫做通信。
什么是成本
这是是指时间成本与空间成本。 时间就是传递数据所花费的时间。空间是指传递过程耗费容量大小。
都有哪些通信方式
全局变量
线程间通信
共享内存
共享文件
管道
Socket
硬件(串口,USB) 等等
全局变量
全局变量是成本最低通信方法,通过设置
- 一维数组与二维数组的声明与定义
恋洁e生
二维数组一维数组定义声明初始化
/** * */ package test20111005; /** * @author FlyingFire * @date:2011-11-18 上午04:33:36 * @author :代码整理 * @introduce :一维数组与二维数组的初始化 *summary: */ public c
- Spring Mybatis独立事务配置
toknowme
mybatis
在项目中有很多地方会使用到独立事务,下面以获取主键为例
(1)修改配置文件spring-mybatis.xml <!-- 开启事务支持 --> <tx:annotation-driven transaction-manager="transactionManager" /> &n
- 更新Anadroid SDK Tooks之后,Eclipse提示No update were found
xp9802
eclipse
使用Android SDK Manager 更新了Anadroid SDK Tooks 之后,
打开eclipse提示 This Android SDK requires Android Developer Toolkit version 23.0.0 or above, 点击Check for Updates
检测一会后提示 No update were found