Keras实现 DenseNet

参考自https://github.com/titu1994/DenseNet/blob/master/densenet.py


先来一张图,便于理解网络结构,推荐的dense_block一般是3。两个dense_block之间的就是过渡层。每个dense_block内部都使用密集连接。



Conv_block:

卷积操作,按照论文的说法,这里应该是一个组合函数,分别为:BatchNormalization、ReLU和3x3 Conv。

def conv_block(ip, nb_filter, bottleneck=False, dropout_rate=None, weight_decay=1e-4):
    ''' Apply BatchNorm, Relu, 3x3 Conv2D, optional bottleneck block and dropout
        Args:
            ip: Input keras tensor
            nb_filter: number of filters
            bottleneck: add bottleneck block
            dropout_rate: dropout rate
            weight_decay: weight decay factor
        Returns: keras tensor with batch_norm, relu and convolution2d added (optional bottleneck)
    '''
    concat_axis = 1 if K.image_data_format() == 'channel_first' else -1

    x = BatchNormalization(axis=concat_axis, epsilon=1.1e-5)(ip)
    x = Activation('relu')(x)

    if bottleneck:
        inter_channel = nb_filter * 4
        x = Conv2D(inter_channel, (1, 1), kernel_initializer='he_normal', padding='same', use_bias=False,
                   kernel_regularizer=l2(weight_decay))(x)
        x = BatchNormalization(axis=concat_axis, epsilon=1.1e-5)(x)
        x = Activation('relu')(x)

    x = Conv2D(nb_filter, (3, 3), kernel_initializer='he_normal', padding='same', use_bias=False)(x)

    if dropout_rate:
        x = Dropout(dropout_rate)(x)

    return x

其中的concat_axis表示特征轴,因为连接和BN都是对特征轴而言的。bottleneck表示是否使用瓶颈层,也就是使用1x1的卷继层将特征图的通道数进行压缩。


Transition_block:

过渡层,用来连接两个dense_block。同时在最后一个dense_block的尾部不需要使用过渡层。按照论文的说法,过渡层由四部分组成:BatchNormalization、ReLU、1x1Conv和2x2Maxpooling。

def transition_block(ip, nb_filter, compression=1.0, weight_decay=1e-4):
    '''Apply BatchNorm, ReLU, Conv2d, optional compressoin, dropout and Maxpooling2D
        Args:
            ip: keras tensor
            nb_filter: number of filters
            compression: caculated as 1 - reduction. Reduces the number of features maps in the transition block
            dropout_rate: dropout rate
            weight_decay: weight decay factor
        Returns:
            keras tensor, after applying batch_norm, relu-conv, dropout, maxpool
    '''
    concat_axis = 1 if K.image_data_format() == 'channels_first' else -1

    x = BatchNormalization(axis=concat_axis, epsilon=1.1e-5)(ip)
    x = Activation('relu')(x)
    x = Conv2D(int(nb_filter * compression), (1, 1), kernel_initializer='he_normal', padding='same', use_bias=False,
               kernel_regularizer=l2(weight_decay))(x)
    x = AveragePooling2D((2, 2), strides=(2, 2))(x)

    return x

其中的Conv2D操作实现了1x1的卷积操作,同时使用了compression_rate,也就是论文中说的压缩率,将通道数进行调整。


Dense_block:

此处使用循环实现了dense_block的密集连接。

def dense_block(x, nb_layers, nb_filter, growth_rate, bottleneck=False, dropout_rate=None, weight_decay=1e-4,
                grow_nb_filters=True, return_concat_list=False):
    '''Build a dense_block where the output of ench conv_block is fed t subsequent ones
        Args:
            x: keras tensor
            nb_layser: the number of layers of conv_block to append to the model
            nb_filter: number of filters
            growth_rate: growth rate
            bottleneck: bottleneck block
            dropout_rate: dropout rate
            weight_decay: weight decay factor
            grow_nb_filters: flag to decide to allow number of filters to grow
            return_concat_list: return the list of feature maps along with the actual output
        Returns:
            keras tensor with nb_layers of conv_block appened
    '''

    concat_axis = 1 if K.image_data_format() == 'channels_first' else -1

    x_list = [x]

    for i in range(nb_layers):
        cb = conv_block(x, growth_rate, bottleneck, dropout_rate, weight_decay)
        x_list.append(cb)
        x = concatenate([x, cb], axis=concat_axis)

        if grow_nb_filters:
            nb_filter += growth_rate

    if return_concat_list:
        return x, nb_filter, x_list
    else:
        return x, nb_filter

其中的x = concatenate([x, cb], axis=concat_axis)操作使得x在每次循环中始终维护一个全局状态,第一次循环输入为x,输出为cb1,第二的输入为cb=[x, cb1],输出为cb2,第三次的输入为cb=[x, cb1, cb2],输出为cb3,以此类推。增长率growth_rate其实就是每次卷积时使用的卷积核个数,也就是最后输出的通道数。


Create_dense_net:

构建网络模型:

def create_dense_net(nb_classes, img_input, include_top, depth=40, nb_dense_block=3, growth_rate=12, nb_filter=-1,
                     nb_layers_per_block=[1], bottleneck=False, reduction=0.0, dropout_rate=None, weight_decay=1e-4,
                     subsample_initial_block=False, activation='softmax'):
    ''' Build the DenseNet model
        Args:
            nb_classes: number of classes
            img_input: tuple of shape (channels, rows, columns) or (rows, columns, channels)
            include_top: flag to include the final Dense layer
            depth: number or layers
            nb_dense_block: number of dense blocks to add to end (generally = 3)
            growth_rate: number of filters to add per dense block
            nb_filter: initial number of filters. Default -1 indicates initial number of filters is 2 * growth_rate
            nb_layers_per_block: list, number of layers in each dense block
            bottleneck: add bottleneck blocks
            reduction: reduction factor of transition blocks. Note : reduction value is inverted to compute compression
            dropout_rate: dropout rate
            weight_decay: weight decay rate
            subsample_initial_block: Set to True to subsample the initial convolution and
                    add a MaxPool2D before the dense blocks are added.
            subsample_initial:
            activation: Type of activation at the top layer. Can be one of 'softmax' or 'sigmoid'.
                    Note that if sigmoid is used, classes must be 1.
        Returns: keras tensor with nb_layers of conv_block appended
    '''

    concat_axis = 1 if K.image_data_format() == 'channel_first' else -1

    if type(nb_layers_per_block) is not list:
        print('nb_layers_per_block should be a list!!!')
        return 0

    final_nb_layer = nb_layers_per_block[-1]
    nb_layers = nb_layers_per_block[:-1]

    if nb_filter <= 0:
        nb_filter = 2 * growth_rate
    compression = 1.0 - reduction
    if subsample_initial_block:
        initial_kernel = (7, 7)
        initial_strides = (2, 2)
    else:
        initial_kernel = (3, 3)
        initial_strides = (1, 1)

    x = Conv2D(nb_filter, initial_kernel, kernel_initializer='he_normal', padding='same',
               strides=initial_strides, use_bias=False, kernel_regularizer=l2(weight_decay))(img_input)
    if subsample_initial_block:
        x = BatchNormalization(axis=concat_axis, epsilon=1.1e-5)(x)
        x = Activation('relu')(x)
        x = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)

    for block_index in range(nb_dense_block - 1):
        x, nb_filter = dense_block(x, nb_layers[block_index], nb_filter, growth_rate, bottleneck=bottleneck,
                                   dropout_rate=dropout_rate, weight_decay=weight_decay)
        x = transition_block(x, nb_filter, compression=compression, weight_decay=weight_decay)
        nb_filter = int(nb_filter * compression)

    # 最后一个block没有transition_block
    x, nb_filter = dense_block(x, final_nb_layer, nb_filter, growth_rate, bottleneck=bottleneck,
                               dropout_rate=dropout_rate, weight_decay=weight_decay)

    x = BatchNormalization(axis=concat_axis, epsilon=1.1e-5)(x)
    x = Activation('relu')(x)
    x = GlobalAveragePooling2D()(x)

    if include_top:
        x = Dense(nb_classes, activation=activation)(x)

    return x
生成Model:
inputs = Input(tensor=img_input, shape=input_shape)
x = create_dense_net(classes=1000, img_input, include_top=True, depth=169, nb_dense_block=4,
                     growth_rate=32, nb_filter=64, nb_layers_per_block=[6, 12, 32, 32], bottleneck=True, reduction=0.5,
                     dropout_rate=0.0, weight_decay=1e-4, subsample_initial_blockTrue, activation='softmax')
model = Model(inputs, x, name='densenet169')

你可能感兴趣的:(Keras实现 DenseNet)