- 基于Kitti数据集实现MMDetection3D点云物体检测训练
Xian-HHappy
技术知识点kitti三维点云无人驾驶MMDetection3D人工智能计算机视觉目标检测
DataBall助力快速掌握数据集的信息和使用方式,会员享有百种数据集,持续增加中。需要更多数据资源和技术解决方案,知识星球:“DataBall-X数据球(free)”贵在坚持!-----------------------------------------------------------------------------------------------MMDetection3D环境安
- 自动驾驶感知、端到端论文集(2024-10-11)
自动驾驶小学生
毫米波雷达摄像头多传感器融合
文章目录1.Detection2.Segmentation(Map)3.DepthEstimation4.HighResolution5.End-to-EndAutonomousDriving1.DetectionLabelDistill:Label-guidedCross-modalKnowledgeDistillationforCamera-based3DObjectDetectionECCV
- 【核心算法篇七】《DeepSeek异常检测:孤立森林与AutoEncoder对比》
再见孙悟空_
「2025DeepSeek技术全景实战」算法分布式docker计算机视觉人工智能自然语言处理DeepSeek
大家好,今天我们来深入探讨一下《DeepSeek异常检测:孤立森林与AutoEncoder对比》这篇技术博客。我们将从核心内容、原理、应用场景等多个方面进行详细解析,力求让大家对这两种异常检测方法有一个全面而深入的理解。一、引言在数据科学和机器学习领域,异常检测(AnomalyDetection)是一个非常重要的任务。它的目标是从数据集中识别出那些与大多数数据显著不同的异常点。这些异常点可能是由于
- 【深度学习】计算机视觉(CV)-目标检测-DETR(DEtection TRansformer)—— 基于 Transformer 的端到端目标检测
IT古董
深度学习人工智能深度学习计算机视觉目标检测
1.什么是DETR?DETR(DEtectionTRansformer)是FacebookAI(FAIR)于2020年提出的端到端目标检测算法,它基于Transformer架构,消除了FasterR-CNN、YOLO等方法中的候选框(AnchorBoxes)和非极大值抑制(NMS)机制,使目标检测变得更简单、高效。论文:End-to-EndObjectDetectionwithTransforme
- arXiv每日推荐-3.4:语音/音频每日论文速递
sapienst
语音识别语音识别
同步公众号(arXiv每日学术速递)【1】SELD-TCN:SoundEventLocalization&DetectionviaTemporalConvolutionalNetworks标题:SELD-TCN:基于时间卷积网络的声音事件定位与检测作者:KarimGuirguis,BinYang备注:5pages,3tables,2figures.SubmittedtoEUSIPCO2020链接:
- CVPR‘24 | 百度开源DETRs在实时目标检测中胜过YOLOs
3D视觉工坊
3D视觉从入门到精通百度目标检测人工智能计算机视觉
点击下方卡片,关注「3D视觉工坊」公众号选择星标,干货第一时间送达来源:3D视觉工坊添加小助理:dddvision,备注:目标检测,拉你入群。文末附行业细分群论文题目:DETRsBeatYOLOsonReal-timeObjectDetection作者:WenyuLv,YianZhao等作者机构:BaiduInc.论文链接:https://arxiv.org/pdf/2304.08069.pdf代
- 并发编程利器 - Future 接口
小马不敲代码
Java并发编程
一、背景介绍对于线程池来说,任务执行类只需要实现Runnable接口,然后交给线程池,就可以轻松的实现异步执行多个任务的目标,提升程序的执行效率,比如如下异步执行任务下载。//创建一个线程池ExecutorServiceexecutor=Executors.newFixedThreadPool(2);//提交任务executor.submit(newRunnable(){@Overridepubl
- 【目标检测】多模态航空目标检测:A SIMPLE AERIAL DETECTION BASELINE OF MULTIMODAL LANGUAGE MODELS
慕容紫英问情
目标检测目标检测人工智能计算机视觉
阅读并理解一篇论文:ASIMPLEAERIALDETECTIONBASELINEOFMULTIMODALLANGUAGEMODELS该文首次提出了一种将多模态语言模型应用于航空检测的简单基线方法,名为LMMRotate。贡献:具体而言,首先引入一种归一化方法,将检测输出转换为文本输出,以适配多模态语言模型框架。接着,提出一种评估方法,确保多模态语言模型与传统目标检测模型之间能够进行公平比较。通过微
- flutter常见面试题(欢迎私信投稿——更新到10)
郝晨妤
flutterflutter前端
1、谈谈Flutter中的Future、async和awaitFuture对象表示异步操作的结果,我们通常通过then()来处理返回的结果async用于标明函数是一个异步函数,其返回值类型是Future类型await用来等待耗时操作的返回结果,这个操作会阻塞到后面的代码isolate异步并行多个任务,Future是异步串行多个任务2、介绍Widget、State、Context概念Widget:在
- ORA-39126: Worker unexpected fatal error in KUPW$WORKER.FETCH_XML_OBJECTS [ORA-04063: view “SYS.KU$_
当代小学生
数据库ORA-39126ORA-04063
今天expdp导出数据库,遇到了ORA-39126:WorkerunexpectedfatalerrorinKUPW$WORKER.FETCH_XML_OBJECTS[ORA-04063:view"SYS.KU$_RADM_FPTM_VIEW"haserrors报错,记录下处理过程首先报错如下:rocessingobjecttypeDATABASE_EXPORT/EARLY_OPTIONS/VIE
- 多线程异步执行,等待执行全部执行完成后,返回全部结果 CompletableFuture和Future以及CountDownLatch 使用
知道的越多越难受
javajavajvmservlet
需求:需要异步执行多个任务,获取每个任务的结果。根据任务结果判断是否继续后面的操作//存储全部任务返回结果集合publicstaticvoidmain(String[]args){Listobjects=Collections.synchronizedList(newArrayList{try{Thread.sleep(1000);}catch(InterruptedExceptione){e.p
- 第N11周:seq2seq翻译实战-Pytorch复现
计算机真好丸
pytorch人工智能python
文章目录一、前期准备1.搭建语言类2.文本处理函数3.文件读取函数二、Seq2Seq模型1.编码器(encoder)2.解码器(decoder)三、训练1.数据预处理2.训练函数3.评估四、评估与训练1.Loss图2.可视化注意力五、总结本文为365天深度学习训练营中的学习记录博客原作者:K同学啊一、前期准备from__future__importunicode_literals,print_fu
- 19.4 集成Spring MVC-《SSM深入解析与项目实战》
谙忆
SSM项目实战
19.4集成SpringMVC-《SSM深入解析与项目实战》项目中所有的源码都可以在此链接的仓库中找到:https://github.com/chenhaoxiang/uifuture-ssm文章目录19.4集成SpringMVC27:Freemarker依赖application-mvc.xml文件web.xml文件内容web.xml做了什么index.ftl配置方法跳转页面19.4集成Spri
- python M3U8转换为MP4
会飞的鱼—
python
importosimportasyncioimportrandomimportshutilimportaiohttpimportffmpegfromconcurrent.futuresimportThreadPoolExecutor#M3U8文件的URL#m3u8_url='********************.m3u8'#临时存储TS文件的文件夹ts_folder='ts_files'os.
- Java中的并发状态共享实现
兔子先生°
java
文章目录前言一、代码解析二、关键点解释二、使用方式总结前言在多线程和分布式系统中,数据的一致性和同步性是至关重要的。为了处理这些需求,Java提供了多种工具和技术,其中之一就是CompletableFuture。本文将介绍一个使用CompletableFuture来实现简单状态共享机制的示例代码。一、代码解析下面是一个名为StateShare的类,它利用了ConcurrentHashMap与Com
- 如何在Java中处理异步操作中的异常?
北执南念
工作中总结加强学习java
如何在Java中处理异步操作中的异常?文章目录如何在Java中处理异步操作中的异常?1.使用Future和ExecutorService2.使用CompletableFuture3.使用RxJava或ProjectReactor4.异步框架的特定异常处理在Java中处理异步操作中的异常是一个重要的任务,因为异步编程模型通常意味着异常不会像同步代码那样直接被抛出到调用栈中。处理异步操作中的异常通常涉
- 响应式编程RxJava
剑客狼心
rxjavaandroid
了解回调的通常都听过回调地狱。所谓回调指的是将一个方法(或代码块、函数)作为参数传递给另一个方法。当某个操作完成时,后者会调用这个传递过来的方法。常用于异步编程或事件驱动编程,用来处理异步操作的结果。看下面的代码,模拟网络连接请求,请求需要消耗一定时间,因此同步运行会造成明显的顿感。publicclassNetworkRequest{publicCompletableFuturemakeReque
- The pandas.np module is deprecated and will be removed from pandas in a future version. Import numpy
lucky多多
解决安装配置等问题
Thepandas.npmoduleisdeprecatedandwillberemovedfrompandasinafutureversion.Importnumpydirectlyinsteadfrompandasimportnp这种原因是因为我还在用frompandasimportnp看来是要升级下了pipinstall--upgradepandas之后根据控制台返回的提示作相应的更改,我这
- 磨人小妖精-tensorflow之removed in a future version
凯旋的铁铁
磨人的小妖精pythontensorflow
TensorFlow1.14版本TensorFlow使用五个不同级别的日志消息。按照上升的顺序,它们是DEBUG,INFO,WARN,ERROR和FATAL。当您在任何这些级别配置日志记录时,TensorFlow将输出与该级别相对应的所有日志消息以及所有级别的严重级别。例如,如果设置了ERROR的日志记录级别,则会收到包含ERROR和FATAL消息的日志输出,如果设置了一个DEBUG级别,则会从所
- FutureWarning: The pandas.core.datetools module is deprecated and will be removed in a future versio
byteyoung
错误调试
一直用pandas做数据分析,不过一直用的是老版本,还是0.20,今天做平稳性分析,出现了一个警告信息FutureWarning:Thepandas.core.datetoolsmoduleisdeprecatedandwillberemovedinafutureversion.Pleaseusethepandas.tseriesmoduleinstead.frompandas.coreimpor
- 20240619-James-快速鸟瞰并发编程, 呕心沥血整理的架构技术(第3篇)
2401_89760349
架构java网络
其实功能接口如下接口描述Runnablerun()方法没有返回值。Callablecall方法有返回值。FutureFuture是对于具体的Runnable任务或Callable任务的执行结果进行取消、查询是否完成、获取结果。必要时可以通过get方法获取执行结果,该方法会阻塞直到任务返回结果。ExecutorService使用Future作为返回类型。ExecutorServiceexecutor
- 【深度学习】计算机视觉(CV)-目标检测-SSD(Single Shot MultiBox Detector)—— 单次检测多框检测器
IT古董
深度学习人工智能计算机视觉深度学习目标检测
SSD(SingleShotMultiBoxDetector)——单次检测多框检测器1️⃣什么是SSD?SSD(SingleShotMultiBoxDetector)是一种用于目标检测(ObjectDetection)的深度学习模型,由WeiLiu等人在2016年提出。它采用单阶段(SingleStage)方法,能够直接从图像中检测多个对象,并输出类别和边界框,比传统的两阶段方法(如FasterR
- 【深度学习】YOLO-World: Real-Time Open-Vocabulary Object Detection,目标检测
XD742971636
深度学习机器学习深度学习YOLO目标检测
介绍一个酷炫的目标检测方式:论文:https://arxiv.org/abs/2401.17270代码:https://github.com/AILab-CVC/YOLO-World文章目录摘要Introduction第2章相关工作2.1传统目标检测2.2开放词汇目标检测第3章方法3.1预训练公式:区域-文本对3.2模型架构3.3可重参数化的视觉-语言路径聚合网络(RepVL-PAN)3.4预训练
- 集成学习算法简述
終不似少年遊*
人工智能学习进阶集成学习算法机器学习人工智能提高效率
目录1.必要的导入2.Bagging集成3.基于matplotlib写一个函数对决策边界做可视化4.总结图中结论5.扩展说明1.必要的导入#Tosupportbothpython2andpython3from__future__importdivision,print_function,unicode_literals#Commonimportsimportnumpyasnpimportos#to
- Python 魔法学院 - 第24篇:Python 解释器优化 ⭐⭐⭐
星核日记
《Python魔法学院》python开发语言pycharmwindowsPython性能优化
目录引言1.Cython与PyPy1.1Cython1.1.1Cython的优势1.1.2Cython的简单示例1.1.3Cython的适用场景1.2PyPy1.2.1PyPy的优势1.2.2PyPy的简单示例1.2.3PyPy的适用场景1.3Cython与PyPy的对比2.并行计算与分布式计算2.1并行计算2.1.1multiprocessing模块2.1.2concurrent.futures
- 【python】并发编程——多线程
南隅。
python开发语言
文章目录1一些概念1.1线程概念1.2线程模型1.2.1多对一1.2.2一对一1.2.3多对多1.2.4双层模型2ThreadinPython2.1threading2.1.1示例2.1.2关于线程返回值设置保存运行结果的全局变量重写Thread类2.2concurrent.future线程池2.2.1例程2.2.2死锁的情况相互等待worker不够用3参考1一些概念1.1线程概念线程是程序的执行
- 计算机视觉核心任务
飞瀑
AIyolo
1.计算机视频重要分类计算机视觉的重要任务可以大致分为以下几类:1.图像分类(ImageClassification)识别图像属于哪个类别,例如猫、狗、汽车等。应用场景:物品识别、人脸识别、医疗影像分类。代表模型:ResNet、EfficientNet、ViT(VisionTransformer)。2.目标检测(ObjectDetection)识别图像中目标的位置(边界框)及类别。应用场景:自动驾
- 图像处理篇---基本OpenMV图像处理
Ronin-Lotus
图像处理篇嵌入式硬件篇图像处理人工智能计算机视觉python机器学习OpenMV
文章目录前言1.灰度化(Grayscale)2.二值化(Thresholding)3.掩膜(Mask)4.腐蚀(Erosion)5.膨胀(Dilation)6.缩放(Scaling)7.旋转(Rotation)8.平移(Translation)9.边缘检测(EdgeDetection)10.轮廓检测(ContourDetection)11.总结总结前言以上就是今天要讲的内容,本文仅仅简单介绍了Op
- 竞争检测、固件、生产级 Go
go
本篇内容是根据2017年4月份#42Racedetection,firmware,production-gradeGo音频录制内容的整理与翻译KavyaJoshi参加了节目,谈论了生产级Go、用Go编写固件、使复杂的技术概念易于理解以及其他有趣的Go项目和新闻。过程中为符合中文惯用表达有适当删改,版权归原作者所有.ErikSt.Martin:好的,大家好,欢迎回来收听新一期的GoTime播客。这是
- CUDA检测失败的解决方案
HackDashX
Python
CUDA检测失败的解决方案在使用Python进行CUDA编程时,有时候会遇到"CUDAdetectionfailed"的错误信息。这个错误通常表示CUDA驱动程序无法正确地检测到CUDA设备。在本文中,我将为您提供一些解决这个问题的方法。以下是一些可能的原因和相应的解决方案:CUDA驱动程序未正确安装:首先,请确保您已正确安装了与您的CUDA版本相匹配的CUDA驱动程序。您可以从NVIDIA官方网
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =