数据结构与算法之美学习笔记:30 | 图的表示:如何存储微博、微信等社交网络中的好友关系?

目录

  • 前言
  • 如何理解“图”?
  • 邻接矩阵存储方法
  • 邻接表存储方法
  • 解答开篇
  • 内容小结

前言

数据结构与算法之美学习笔记:30 | 图的表示:如何存储微博、微信等社交网络中的好友关系?_第1张图片
本节课程思维导图:
数据结构与算法之美学习笔记:30 | 图的表示:如何存储微博、微信等社交网络中的好友关系?_第2张图片
微博、微信这些社交软件我想你肯定都玩过吧。在微博中,两个人可以互相关注;在微信中,两个人可以互加好友。那你知道,如何存储微博、微信等这些社交网络的好友关系吗?

如何理解“图”?

今天我们要讲另一种非线性表数据结构,图(Graph)。和树比起来,这是一种更加复杂的非线性表结构。
我们知道,树中的元素我们称为节点,图中的元素我们就叫做顶点(vertex)。从我画的图中可以看出来,图中的一个顶点可以与任意其他顶点建立连接关系。我们把这种建立的关系叫做边(edge)。
数据结构与算法之美学习笔记:30 | 图的表示:如何存储微博、微信等社交网络中的好友关系?_第3张图片
我们就拿微信举例子吧。我们可以把每个用户看作一个顶点。如果两个用户之间互加好友,那就在两者之间建立一条边。所以,整个微信的好友关系就可以用一张图来表示。其中,每个用户有多少个好友,对应到图中,就叫做顶点的度(degree),就是跟顶点相连接的边的条数。
微博的社交关系跟微信还有点不一样,微博允许单向关注,也就是说,用户 A 关注了用户 B,但用户 B 可以不关注用户 A。那我们如何用图来表示这种单向的社交关系呢?

们可以把刚刚讲的图结构稍微改造一下,引入边的“方向”的概念。如果用户 A 关注了用户 B,我们就在图中画一条从 A 到 B 的带箭头的边,来表示边的方向。如果用户 A 和用户 B 互相关注了,那我们就画一条从 A 指向 B 的边,再画一条从 B 指向 A 的边。我们把这种边有方向的图叫做“有向图”。以此类推,我们把边没有方向的图就叫做“无向图”。
数据结构与算法之美学习笔记:30 | 图的表示:如何存储微博、微信等社交网络中的好友关系?_第4张图片
我们刚刚讲过,无向图中有“度”这个概念,表示一个顶点有多少条边。在有向图中,我们把度分为入度(In-degree)和出度(Out-degree)。顶点的入度,表示有多少条边指向这个顶点;顶点的出度,表示有多少条边是以这个顶点为起点指向其他顶点。对应到微博的例子,入度就表示有多少粉丝,出度就表示关注了多少人。

QQ 中的社交关系要更复杂一点。QQ 不仅记录了用户之间的好友关系,还记录了两个用户之间的亲密度,如果两个用户经常往来,那亲密度就比较高;如果不经常往来,亲密度就比较低。如何在图中记录这种好友关系的亲密度呢?

这里就要用到另一种图,带权图(weighted graph)。在带权图中,每条边都有一个权重(weight),我们可以通过这个权重来表示 QQ 好友间的亲密度。
数据结构与算法之美学习笔记:30 | 图的表示:如何存储微博、微信等社交网络中的好友关系?_第5张图片

邻接矩阵存储方法

掌握了图的概念之后,我们再来看下,如何在内存中存储图这种数据结构呢?
图最直观的一种存储方法就是,邻接矩阵(Adjacency Matrix)。

邻接矩阵的底层依赖一个二维数组。对于无向图来说,如果顶点 i 与顶点 j 之间有边,我们就将 A[i][j]和 A[j][i]标记为 1;对于有向图来说,如果顶点 i 到顶点 j 之间,有一条箭头从顶点 i 指向顶点 j 的边,那我们就将 A[i][j]标记为 1。同理,如果有一条箭头从顶点 j 指向顶点 i 的边,我们就将 A[j][i]标记为 1。对于带权图,数组中就存储相应的权重。
数据结构与算法之美学习笔记:30 | 图的表示:如何存储微博、微信等社交网络中的好友关系?_第6张图片
邻接矩阵的存储方式简单、直接,因为基于数组,所以在获取两个顶点的关系时,就非常高效。其次,用邻接矩阵存储图的另外一个好处是方便计算。这是因为,用邻接矩阵的方式存储图,可以将很多图的运算转换成矩阵之间的运算。但是邻接矩阵的存储方式比较浪费存储空间,对于无向图来说,一半空间白白浪费掉了,如果我们存储的是稀疏图(Sparse Matrix),那绝大部分的存储空间都被浪费了。

邻接表存储方法

针对上面邻接矩阵比较浪费内存空间的问题,我们来看另外一种图的存储方法,邻接表(Adjacency List)。
我画了一张邻接表的有向图,邻接表有点像散列表,每个顶点对应一条链表,链表中存储的是与这个顶点相连接的其他顶点。另外我需要说明一下,图中画的是一个有向图的邻接表存储方式,每个顶点对应的链表里面,存储的是指向的顶点。

数据结构与算法之美学习笔记:30 | 图的表示:如何存储微博、微信等社交网络中的好友关系?_第7张图片
邻接矩阵存储起来比较浪费空间,但是使用起来比较节省时间。相反,邻接表存储起来比较节省空间,但是使用起来就比较耗时间。
在基于链表法解决冲突的散列表中,如果链过长,为了提高查找效率,我们可以将链表换成其他更加高效的数据结构,比如平衡二叉查找树。

我们可以将邻接表中的链表改成平衡二叉查找树。实际开发中,我们可以选择用红黑树。这样,我们就可以更加快速地查找两个顶点之间是否存在边了。当然,这里的二叉查找树可以换成其他动态数据结构,比如跳表、散列表等。除此之外,我们还可以将链表改成有序动态数组,可以通过二分查找的方法来快速定位两个顶点之间否是存在边。

解答开篇

现在我们回过头来看开篇的问题,如何存储微博、微信等社交网络中的好友关系?
我只拿微博来讲解。针对微博用户关系,假设我们需要支持下面这样几个操作:
判断用户 A 是否关注了用户 B;
用户 A 关注用户 B;
用户 A 取消关注用户 B;
根据用户名称的首字母排序,分页获取用户的粉丝列表;
根据用户名称的首字母排序,分页获取用户的关注列表。
因为社交网络是一张稀疏图,使用邻接矩阵存储比较浪费存储空间。所以,这里我们采用邻接表来存储。

用一个邻接表来存储这种有向图是不够的,我们需要一个逆邻接表。邻接表中存储了用户的关注关系,逆邻接表中存储的是用户的被关注关系。对应到图上,邻接表中,每个顶点的链表中,存储的就是这个顶点指向的顶点,逆邻接表中,每个顶点的链表中,存储的是指向这个顶点的顶点。如果要查找某个用户关注了哪些用户,我们可以在邻接表中查找;如果要查找某个用户被哪些用户关注了,我们从逆邻接表中查找。
数据结构与算法之美学习笔记:30 | 图的表示:如何存储微博、微信等社交网络中的好友关系?_第8张图片
基础的邻接表不适合快速判断两个用户之间是否是关注与被关注的关系,所以我们选择改进版本,将邻接表中的链表改为支持快速查找的动态数据结构。因为我们需要按照用户名称的首字母排序,分页来获取用户的粉丝列表或者关注列表,用跳表这种结构再合适不过了。这是因为,跳表插入、删除、查找都非常高效,时间复杂度是 O(logn),空间复杂度上稍高,是 O(n)。最重要的一点,跳表中存储的数据本来就是有序的了,分页获取粉丝列表或关注列表,就非常高效。

如果对于小规模的数据,比如社交网络中只有几万、几十万个用户,我们可以将整个社交关系存储在内存中。但是如果像数据规模太大,我们就无法全部存储在内存中了。这个时候该怎么办呢?
我们可以通过哈希算法等数据分片方式,将邻接表存储在不同的机器上。你可以看下面这幅图,我们在机器 1 上存储顶点 1,2,3 的邻接表,在机器 2 上,存储顶点 4,5 的邻接表。逆邻接表的处理方式也一样。当要查询顶点与顶点关系的时候,我们就利用同样的哈希算法,先定位顶点所在的机器,然后再在相应的机器上查找。
数据结构与算法之美学习笔记:30 | 图的表示:如何存储微博、微信等社交网络中的好友关系?_第9张图片
除此之外,我们还有另外一种解决思路,就是利用外部存储(比如硬盘),因为外部存储的存储空间要比内存会宽裕很多。数据库是我们经常用来持久化存储关系数据的,所以我这里介绍一种数据库的存储方式。
我用下面这张表来存储这样一个图。为了高效地支持前面定义的操作,我们可以在表上建立多个索引,比如第一列、第二列,给这两列都建立索引。
数据结构与算法之美学习笔记:30 | 图的表示:如何存储微博、微信等社交网络中的好友关系?_第10张图片

内容小结

今天我们学习了图这种非线性表数据结构,关于图,你需要理解这样几个概念:无向图、有向图、带权图、顶点、边、度、入度、出度。

除此之外,我们还学习了图的两个主要的存储方式:邻接矩阵和邻接表。邻接矩阵存储方法的缺点是比较浪费空间,但是优点是查询效率高,而且方便矩阵运算。邻接表存储方法中每个顶点都对应一个链表,存储与其相连接的其他顶点。尽管邻接表的存储方式比较节省存储空间,但链表不方便查找,所以查询效率没有邻接矩阵存储方式高。针对这个问题,邻接表还有改进升级版,即将链表换成更加高效的动态数据结构,比如平衡二叉查找树、跳表、散列表等。

你可能感兴趣的:(数据结构与算法之美学习笔记,数据结构,算法)