最好的补充
,因为Stream API可以极大提供Java程序员的生产力,让程序员写出高效率、干净、简洁的代码。实际开发中,项目中多数数据源都来自于MySQL、Oracle等。但现在数据源可以更多了,有MongDB,Radis等,而这些NoSQL的数据就需要Java层面去处理。
Stream 是数据渠道,用于操作数据源(集合、数组等)所生成的元素序列。
Stream 和 Collection 集合的区别:**Collection 是一种静态的内存数据结构,讲的是数据,而 Stream 是有关计算的,讲的是计算。**前者是主要面向内存,存储在内存中,后者主要是面向 CPU,通过 CPU 实现计算。
注意:
①Stream 自己不会存储元素。
②Stream 不会改变源对象。相反,他们会返回一个持有结果的新Stream。
③Stream 操作是延迟执行的。这意味着他们会等到需要结果的时候才执行。即一旦执行终止操作,就执行中间操作链,并产生结果。
④ Stream一旦执行了终止操作,就不能再调用其它中间操作或终止操作了。
1- 创建 Stream
一个数据源(如:集合、数组),获取一个流
2- 中间操作
每次处理都会返回一个持有结果的新Stream,即中间操作的方法返回值仍然是Stream类型的对象。因此中间操作可以是个操作链
,可对数据源的数据进行n次处理,但是在终结操作前,并不会真正执行。
3- 终止操作(终端操作)
终止操作的方法返回值类型就不再是Stream了,因此一旦执行终止操作,就结束整个Stream操作了。一旦执行终止操作,就执行中间操作链,最终产生结果并结束Stream。
方式一:通过集合
Java8 中的 Collection 接口被扩展,提供了两个获取流的方法:
default Stream stream() : 返回一个顺序流
default Stream parallelStream() : 返回一个并行流
@Test
public void test01(){
List<Integer> list = Arrays.asList(1,2,3,4,5);
//JDK1.8中,Collection系列集合增加了方法
Stream<Integer> stream = list.stream();
}
方式二:通过数组
Java8 中的 Arrays 的静态方法 stream() 可以获取数组流:
@Test
public void test02(){
String[] arr = {"hello","world"};
Stream<String> stream = Arrays.stream(arr);
}
@Test
public void test03(){
int[] arr = {1,2,3,4,5};
IntStream stream = Arrays.stream(arr);
}
方式三:通过Stream的of()
可以调用Stream类静态方法 of(), 通过显示值创建一个流。它可以接收任意数量的参数。
@Test
public void test04(){
Stream<Integer> stream = Stream.of(1,2,3,4,5);
stream.forEach(System.out::println);
}
方式四:创建无限流(了解)
可以使用静态方法 Stream.iterate() 和 Stream.generate(), 创建无限流。
迭代
public static Stream iterate(final T seed, final UnaryOperator f)
生成
public static Stream generate(Supplier s)
// 方式四:创建无限流
@Test
public void test05() {
// 迭代
// public static Stream iterate(final T seed, final
// UnaryOperator f)
Stream<Integer> stream = Stream.iterate(0, x -> x + 2);
stream.limit(10).forEach(System.out::println);
// 生成
// public static Stream generate(Supplier s)
Stream<Double> stream1 = Stream.generate(Math::random);
stream1.limit(10).forEach(System.out::println);
}
多个中间操作可以连接起来形成一个流水线,除非流水线上触发终止操作,否则中间操作不会执行任何的处理!而在终止操作时一次性全部处理,称为“惰性求值”。
1-筛选与切片
方 法 | 描 述 |
---|---|
filter(Predicatep) | 接收 Lambda , 从流中排除某些元素 |
distinct() | 筛选,通过流所生成元素的 hashCode() 和 equals() 去除重复元素 |
limit(long maxSize) | 截断流,使其元素不超过给定数量 |
skip(long n) | 跳过元素,返回一个扔掉了前 n 个元素的流。 若流中元素不足 n 个,则返回一个空流。与 limit(n) 互补 |
2-映 射
方法 | 描述 |
---|---|
map(Function f) | 接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的元素。 |
mapToDouble(ToDoubleFunction f) | 接收一个函数作为参数,该函数会被应用到每个元素上,产生一个新的 DoubleStream。 |
mapToInt(ToIntFunction f) | 接收一个函数作为参数,该函数会被应用到每个元素上,产生一个新的 IntStream。 |
mapToLong(ToLongFunction f) | 接收一个函数作为参数,该函数会被应用到每个元素上,产生一个新的 LongStream。 |
flatMap(Function f) | 接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流 |
3-排序
方法 | 描述 |
---|---|
sorted() | 产生一个新流,其中按自然顺序排序 |
sorted(Comparator com) | 产生一个新流,其中按比较器顺序排序 |
代码举例:
package com.atguigu.stream;
import org.junit.Test;
import java.util.Arrays;
import java.util.stream.Stream;
public class StreamMiddleOperate {
@Test
public void test01(){
//1、创建Stream
Stream<Integer> stream = Stream.of(1,2,3,4,5,6);
//2、加工处理
//过滤:filter(Predicate p)
//把里面的偶数拿出来
/*
* filter(Predicate p)
* Predicate是函数式接口,抽象方法:boolean test(T t)
*/
stream = stream.filter(t -> t%2==0);
//3、终结操作:例如:遍历
stream.forEach(System.out::println);
}
@Test
public void test02(){
Stream.of(1,2,3,4,5,6)
.filter(t -> t%2==0)
.forEach(System.out::println);
}
@Test
public void test03(){
Stream.of(1,2,3,4,5,6,2,2,3,3,4,4,5)
.distinct()
.forEach(System.out::println);
}
@Test
public void test04(){
Stream.of(1,2,3,4,5,6,2,2,3,3,4,4,5)
.limit(3)
.forEach(System.out::println);
}
@Test
public void test05(){
Stream.of(1,2,2,3,3,4,4,5,2,3,4,5,6,7)
.distinct() //(1,2,3,4,5,6,7)
.filter(t -> t%2!=0) //(1,3,5,7)
.limit(3)
.forEach(System.out::println);
}
@Test
public void test06(){
Stream.of(1,2,3,4,5,6,2,2,3,3,4,4,5)
.skip(5)
.forEach(System.out::println);
}
@Test
public void test07(){
Stream.of(1,2,3,4,5,6,2,2,3,3,4,4,5)
.skip(5)
.distinct()
.filter(t -> t%3==0)
.forEach(System.out::println);
}
@Test
public void test08(){
long count = Stream.of(1,2,3,4,5,6,2,2,3,3,4,4,5)
.distinct()
.peek(System.out::println) //Consumer接口的抽象方法 void accept(T t)
.count();
System.out.println("count="+count);
}
@Test
public void test09(){
//希望能够找出前三个最大值,前三名最大的,不重复
Stream.of(11,2,39,4,54,6,2,22,3,3,4,54,54)
.distinct()
.sorted((t1,t2) -> -Integer.compare(t1, t2))//Comparator接口 int compare(T t1, T t2)
.limit(3)
.forEach(System.out::println);
}
@Test
public void test10(){
Stream.of(1,2,3,4,5)
.map(t -> t+=1)//Function接口抽象方法 R apply(T t)
.forEach(System.out::println);
}
@Test
public void test11(){
String[] arr = {"hello","world","java"};
Arrays.stream(arr)
.map(t->t.toUpperCase())
.forEach(System.out::println);
}
@Test
public void test12(){
String[] arr = {"hello","world","java"};
Arrays.stream(arr)
.flatMap(t -> Stream.of(t.split("|")))//Function接口抽象方法 R apply(T t) 现在的R是一个Stream
.forEach(System.out::println);
}
}
终端操作会从流的流水线生成结果。其结果可以是任何不是流的值,例如:List、Integer,甚至是 void 。
流进行了终止操作后,不能再次使用。
1-匹配与查找
方法 | 描述 |
---|---|
allMatch(Predicate p) | 检查是否匹配所有元素 |
**anyMatch(Predicate p) ** | 检查是否至少匹配一个元素 |
noneMatch(Predicate p) | 检查是否没有匹配所有元素 |
findFirst() | 返回第一个元素 |
findAny() | 返回当前流中的任意元素 |
count() | 返回流中元素总数 |
max(Comparator c) | 返回流中最大值 |
min(Comparator c) | 返回流中最小值 |
forEach(Consumer c) | 内部迭代(使用 Collection 接口需要用户去做迭代,称为外部迭代。 相反,Stream API 使用内部迭代——它帮你把迭代做了) |
2-归约
方法 | 描述 |
---|---|
reduce(T identity, BinaryOperator b) | 可以将流中元素反复结合起来,得到一个值。返回 T |
reduce(BinaryOperator b) | 可以将流中元素反复结合起来,得到一个值。返回 Optional |
备注:map 和 reduce 的连接通常称为 map-reduce 模式,因 Google 用它来进行网络搜索而出名。
3-收集
方 法 | 描 述 |
---|---|
collect(Collector c) | 将流转换为其他形式。接收一个 Collector接口的实现, 用于给Stream中元素做汇总的方法 |
Collector 接口中方法的实现决定了如何对流执行收集的操作(如收集到 List、Set、Map)。
另外, Collectors 实用类提供了很多静态方法,可以方便地创建常见收集器实例,具体方法与实例如下表:
方法 | 返回类型 | 作用 |
---|---|---|
toList | Collector |
把流中元素收集到List |
List<Employee> emps= list.stream().collect(Collectors.toList());
方法 | 返回类型 | 作用 |
---|---|---|
toSet | Collector |
把流中元素收集到Set |
Set<Employee> emps= list.stream().collect(Collectors.toSet());
方法 | 返回类型 | 作用 |
---|---|---|
toCollection | Collector |
把流中元素收集到创建的集合 |
Collection<Employee> emps =list.stream().collect(Collectors.toCollection(ArrayList::new));
方法 | 返回类型 | 作用 |
---|---|---|
counting | Collector |
计算流中元素的个数 |
long count = list.stream().collect(Collectors.counting());
方法 | 返回类型 | 作用 |
---|---|---|
summingInt | Collector |
对流中元素的整数属性求和 |
int total=list.stream().collect(Collectors.summingInt(Employee::getSalary));
方法 | 返回类型 | 作用 |
---|---|---|
averagingInt | Collector |
计算流中元素Integer属性的平均值 |
double avg = list.stream().collect(Collectors.averagingInt(Employee::getSalary));
方法 | 返回类型 | 作用 |
---|---|---|
summarizingInt | Collector |
收集流中Integer属性的统计值。如:平均值 |
int SummaryStatisticsiss= list.stream().collect(Collectors.summarizingInt(Employee::getSalary));
方法 | 返回类型 | 作用 |
---|---|---|
joining | Collector |
连接流中每个字符串 |
String str= list.stream().map(Employee::getName).collect(Collectors.joining());
方法 | 返回类型 | 作用 |
---|---|---|
maxBy | Collector |
根据比较器选择最大值 |
Optional<Emp>max= list.stream().collect(Collectors.maxBy(comparingInt(Employee::getSalary)));
方法 | 返回类型 | 作用 |
---|---|---|
minBy | Collector |
根据比较器选择最小值 |
Optional<Emp> min = list.stream().collect(Collectors.minBy(comparingInt(Employee::getSalary)));
方法 | 返回类型 | 作用 |
---|---|---|
reducing | Collector |
从一个作为累加器的初始值开始,利用BinaryOperator与流中元素逐个结合,从而归约成单个值 |
int total=list.stream().collect(Collectors.reducing(0, Employee::getSalar, Integer::sum));
方法 | 返回类型 | 作用 |
---|---|---|
collectingAndThen | Collector |
包裹另一个收集器,对其结果转换函数 |
int how= list.stream().collect(Collectors.collectingAndThen(Collectors.toList(), List::size));
方法 | 返回类型 | 作用 |
---|---|---|
groupingBy | Collector |
根据某属性值对流分组,属性为K,结果为V |
Map<Emp.Status, List<Emp>> map= list.stream().collect(Collectors.groupingBy(Employee::getStatus));
方法 | 返回类型 | 作用 |
---|---|---|
partitioningBy | Collector |
根据true或false进行分区 |
Map<Boolean,List<Emp>> vd = list.stream().collect(Collectors.partitioningBy(Employee::getManage));
举例:
package com.atguigu.stream;
import java.util.List;
import java.util.Optional;
import java.util.stream.Collectors;
import java.util.stream.Stream;
import org.junit.Test;
public class StreamEndding {
@Test
public void test01(){
Stream.of(1,2,3,4,5)
.forEach(System.out::println);
}
@Test
public void test02(){
long count = Stream.of(1,2,3,4,5)
.count();
System.out.println("count = " + count);
}
@Test
public void test03(){
boolean result = Stream.of(1,3,5,7,9)
.allMatch(t -> t%2!=0);
System.out.println(result);
}
@Test
public void test04(){
boolean result = Stream.of(1,3,5,7,9)
.anyMatch(t -> t%2==0);
System.out.println(result);
}
@Test
public void test05(){
Optional<Integer> opt = Stream.of(1,3,5,7,9).findFirst();
System.out.println(opt);
}
@Test
public void test06(){
Optional<Integer> opt = Stream.of(1,2,3,4,5,7,9)
.filter(t -> t%3==0)
.findFirst();
System.out.println(opt);
}
@Test
public void test07(){
Optional<Integer> opt = Stream.of(1,2,4,5,7,8)
.filter(t -> t%3==0)
.findFirst();
System.out.println(opt);
}
@Test
public void test08(){
Optional<Integer> max = Stream.of(1,2,4,5,7,8)
.max((t1,t2) -> Integer.compare(t1, t2));
System.out.println(max);
}
@Test
public void test09(){
Integer reduce = Stream.of(1,2,4,5,7,8)
.reduce(0, (t1,t2) -> t1+t2);//BinaryOperator接口 T apply(T t1, T t2)
System.out.println(reduce);
}
@Test
public void test10(){
Optional<Integer> max = Stream.of(1,2,4,5,7,8)
.reduce((t1,t2) -> t1>t2?t1:t2);//BinaryOperator接口 T apply(T t1, T t2)
System.out.println(max);
}
@Test
public void test11(){
List<Integer> list = Stream.of(1,2,4,5,7,8)
.filter(t -> t%2==0)
.collect(Collectors.toList());
System.out.println(list);
}
}
新增1:Stream实例化方法
ofNullable()的使用:
Java 8 中 Stream 不能完全为null,否则会报空指针异常。而 Java 9 中的 ofNullable 方法允许我们创建一个单元素 Stream,可以包含一个非空元素,也可以创建一个空 Stream。
//报NullPointerException
//Stream
//System.out.println(stream1.count());
//不报异常,允许通过
Stream<String> stringStream = Stream.of("AA", "BB", null);
System.out.println(stringStream.count());//3
//不报异常,允许通过
List<String> list = new ArrayList<>();
list.add("AA");
list.add(null);
System.out.println(list.stream().count());//2
//ofNullable():允许值为null
Stream<Object> stream1 = Stream.ofNullable(null);
System.out.println(stream1.count());//0
Stream<String> stream = Stream.ofNullable("hello world");
System.out.println(stream.count());//1
iterator()重载的使用:
//原来的控制终止方式:
Stream.iterate(1,i -> i + 1).limit(10).forEach(System.out::println);
//现在的终止方式:
Stream.iterate(1,i -> i < 100,i -> i + 1).forEach(System.out::println);
现在有两个 ArrayList 集合存储队伍当中的多个成员姓名,要求使用传统的for循环(或增强for循环)依次进行以
下若干操作步骤:
Person 类的代码为:
public class Person {
private String name;
public Person() {}
public Person(String name) {
this.name = name;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
@Override
public String toString() {
return "Person{name='" + name + "'}";
}
}
两个队伍(集合)的代码如下:
public static void main(String[] args) {
//第一支队伍
ArrayList<String> one = new ArrayList<>();
one.add("迪丽热巴");
one.add("宋远桥");
one.add("苏星河");
one.add("石破天");
one.add("石中玉");
one.add("老子");
one.add("庄子");
one.add("洪七公");
//第二支队伍
ArrayList<String> two = new ArrayList<>();
two.add("古力娜扎");
two.add("张无忌");
two.add("赵丽颖");
two.add("张三丰");
two.add("尼古拉斯赵四");
two.add("张天爱");
two.add("张二狗");
// ....编写代码完成题目要求
}
参考答案:
public static void main(String[] args) {
//第一支队伍
ArrayList<String> one = new ArrayList<>();
one.add("迪丽热巴");
one.add("宋远桥");
one.add("苏星河");
one.add("石破天");
one.add("石中玉");
one.add("老子");
one.add("庄子");
one.add("洪七公");
//第二支队伍
ArrayList<String> two = new ArrayList<>();
two.add("古力娜扎");
two.add("张无忌");
two.add("赵丽颖");
two.add("张三丰");
two.add("尼古拉斯赵四");
two.add("张天爱");
two.add("张二狗");
// 第一个队伍只要名字为3个字的成员姓名;
// 第一个队伍筛选之后只要前3个人;
Stream<String> streamOne = one.stream().filter(s ‐> s.length() == 3).limit(3);
// 第二个队伍只要姓张的成员姓名;
// 第二个队伍筛选之后不要前2个人;
Stream<String> streamTwo = two.stream().filter(s ‐> s.startsWith("张")).skip(2);
// 将两个队伍合并为一个队伍;
// 根据姓名创建Person对象;
// 打印整个队伍的Person对象信息。
Stream.concat(streamOne, streamTwo).map(Person::new).forEach(System.out::println);
}```