- C语言学生成绩管理系统<;自创>;(功能7有小错误,但可运行)
han_xue_feng
java
腾讯云加速企业和个人开发创新公开直播预告直播预告:07/18(周四)15:00-16:00随着人工智能与大模型的蓬勃发展,我们正步入一个由技微信实习第一天周五入职,早上早早来到了公司,发现好多人都没上班,到十点才陆陆续续有人来,办理完入职后,mentor中联夏令营遗憾没有入选不过hr的回复真的很好,辛苦啦#提前批简历挂麻了怎么办##机械制造投递记录#大数据开发的工作有点过于简单了吧sq大数据开发的
- 医疗金融预测与语音识别中的模型优化及可解释性技术突破
智能计算研究中心
其他
内容概要随着人工智能技术的纵深发展,模型优化与可解释性技术正在重塑医疗诊断、金融预测及语音识别领域的应用范式。在医疗领域,基于自适应学习的动态参数调整机制,结合迁移学习的跨场景知识复用,显著提升了疾病筛查模型的泛化能力;而金融预测场景中,联邦学习框架通过分布式数据协作,在保障隐私安全的前提下,实现了风险预测模型的多维度优化。语音识别领域则依托边缘计算架构,将模型压缩技术与实时推理引擎结合,有效解决
- 第35周—————糖尿病预测模型优化探索
目录目录前言1.检查GPU2.查看数据编辑3.划分数据集4.创建模型与编译训练5.编译及训练模型6.结果可视化7.总结前言本文为365天深度学习训练营中的学习记录博客原作者:K同学啊1.检查GPUimporttorch.nnasnnimporttorch.nn.functionalasFimporttorchvision,torch#设置硬件设备,如果有GPU则使用,没有则使用cpudevice=
- Python自动化机器学习平台库之mindsdb使用详解
概要MindsDB是一个开源的自动化机器学习平台,它通过SQL接口简化了机器学习模型的创建、训练和预测过程。该库的核心理念是将机器学习功能直接集成到数据库中,让开发者无需深入了解复杂的机器学习算法,就能够快速构建和部署预测模型。MindsDB支持多种数据源连接,包括MySQL、PostgreSQL、MongoDB等主流数据库,同时提供了丰富的PythonAPI接口,使得数据科学家和开发者能够在熟悉
- Python 机器学习核心入门与实战进阶 Day 8 - 数据建模与分析项目实战预备:项目规划与需求拆解
蓝婷儿
pythonpython机器学习开发语言
✅今日目标理解数据分析/建模项目的一般流程练习项目需求理解与目标拆解明确后续模型评估指标与预期交付成果起草项目计划文档(可选写为Markdown)一、项目背景与题目建议(可选方向)项目名称简介学生成绩预测分析系统根据历史表现预测成绩是否达标、学科薄弱点等求职者简历筛选模型根据简历信息预测是否通过初筛电商用户购买预测系统分析用户行为数据预测是否购买公司销售数据趋势分析可视化+聚合分析:月销售趋势、区
- MySQL排序大揭秘:从零开始掌握数据排序的魔法
码农技术栈
MySQLmysqlandroidadb开发语言jvm后端性能优化
你是否好奇过数据库如何瞬间将杂乱数据变成有序列表?本文将带你探索MySQL排序的奥秘,揭开背后的技术原理!一、为什么排序如此重要?在我们日常生活中,排序无处不在:电商网站按价格从低到高展示商品社交媒体按时间倒序显示朋友圈学生成绩按分数从高到低排名排序是数据库的核心能力之一,它让海量数据变得有意义且易于理解。想象一下没有排序功能的数据库就像一本没有目录的百科全书!二、MySQL排序基础入门1.最简单
- Logistic回归预测模型2:R语言实现模型的内部和外部验证
前面我们讲了logistic回归预测模型的建立,今天介绍的是模型的验证,可以在训练集和验证集中通过ROC曲线、校准曲线和决策曲线分别进行验证。1、原始数据原始数据分为训练集和验证集,其中训练集用于模型的构建和内部验证,验证集用于外部验证。两个数据集都包含5列,且列名相同。组别Group为因变量,1代表阳性结局,0代表阴性结局。自变量1和4为连续性变量,自变量2和3为二分类变量。2、安装所需要的R包
- (C++)学生管理系统(正式版)(map数组的应用)(string应用)(引用)(文件储存的应用)(C++教学)(C++项目)
目录源代码:代码详解:学生成绩管理系统实现详解一、系统整体设计思路1.数据结构选择2.功能模块划分二、关键函数实现原理1.文件存储与加载save_file函数load_file函数2.核心数据操作add函数mod函数find和del函数3.数据展示display函数statistics函数三、核心技术详解1.字符串分割技术2.map的使用技巧3.文件格式设计4.错误处理机制源代码:/**头文件部分
- 基于图神经网络的ALS候选药物预测模型设计与实现
神经网络15044
MATLAB专栏神经网络深度学习神经网络人工智能深度学习机器学习
基于图神经网络的ALS候选药物预测模型设计与实现一、任务背景与意义肌萎缩侧索硬化症(ALS)是一种致命的神经退行性疾病,目前尚无有效治愈方法。传统药物发现流程耗时长、成本高,而人工智能技术为加速药物发现提供了新途径。本文设计并实现了一个基于图神经网络(GNN)的ALS候选药物预测模型,通过整合分子图结构信息和生物活性数据,实现对潜在治疗ALS化合物的高效筛选。二、系统架构设计
- C# WinForm 实现学生成绩信息管理系统,连接SQL数据库,完整代码
C#WinForm实现学生成绩信息管理系统《面向对象程序设计》实验功能介绍1、学生信息查询2、学生选课信息3、学生信息修改4、学生成绩录入实验分析遇到的问题解决方法主要问题嗨,我是射手座的程序媛,期待与大家更多的交流与学习,欢迎添加:3512724768《面向对象程序设计》实验一、实验目的1.熟练掌握C#开发,掌握建立Windows应用程序的步骤和方法。2.建立面向对象编程理念。3.熟练掌握控件及
- 【ICLR 2022】时序精选论文08|Pyraformer: 基于金字塔注意力机制与多尺度辨识卷积的时间序列预测模型(代码解读附源码)
OverOnEarth
时间序列预测项目实战人工智能机器学习深度学习python算法
ICLR2022PYRAFORMER:LOW-COMPLEXITYPYRAMIDALAT-TENTIONFORLONG-RANGETIMESERIESMODELINGANDFORECASTINGPyraformer要解决的问题基于时间序列数据面临的挑战:建立一个灵活但简约的模型,能够捕获不同范围的时间依赖性。时间序列通常表现为短期和长期的重复模式,将他们考虑在内是准确预测的关键。即能够获得一个同时
- GNN多任务预测模型实现(二):将EXCEL数据转换为图数据
走的远一些
神经网络知识分享知识备份人工智能深度学习
目录一.引言二.加载和检查数据三.提取特征和标签四.标准化特征五.构建节点索引六.构建边及其特征七.总结八.结语一.引言在图神经网络(GraphNeuralNetworks,GNNs)的多任务学习场景中,数据预处理是至关重要的一步。尤其是当我们的数据存储在表格格式(如Excel文件)中时,如何有效地将其转换为图数据格式,是搭建GNN模型的基础。二.加载和检查数据第一步是加载数据并检查其格式。我们通
- 基于python+django+vue.js开发的学生成绩管理系统
西门吹雪1998
毕业设计合集pythondjangovue.js
功能介绍平台采用B/S结构,后端采用主流的Python语言进行开发,前端采用主流的Vue.js进行开发。功能包括:成绩管理、学生管理、课程管理、班级管理、用户管理、日志管理、系统信息模块。源码地址https://github.com/geeeeeeeek/python_score演示地址http://score.gitapp.cn演示帐号:用户名:admin123密码:admin123主要使用技术
- 基于大模型的地中海贫血全流程预测与治疗管理研究报告
LCG元
围术期危险因子预测模型研究人工智能
目录一、引言1.1研究背景与意义1.2研究目的与目标1.3研究方法与数据来源二、地中海贫血概述2.1疾病定义与分类2.2病因与发病机制2.3流行病学特征2.4临床表现与诊断方法三、大模型技术原理与应用现状3.1大模型基本原理3.2在医疗领域的应用案例3.3应用于地中海贫血预测的优势四、术前风险预测与手术方案制定4.1术前风险因素分析4.2大模型预测模型构建与验证4.3根据预测制定个性化手术方案五、
- 基于大模型的胆囊结石全流程预测与诊疗系统技术方案
目录一、系统架构设计1.1数据采集与预处理模块1.2大模型核心算法模块二、全流程系统流程图三、系统集成方案3.1模块交互流程3.2数据流示意图四、系统部署拓扑图五、核心模块实现细节5.1术前风险预测算法5.2术中监测算法5.3术后并发症预测模型六、关键技术验证方案6.1模型验证流程6.2临床试验设计框架七、典型应用场景流程7.1腹腔镜手术决策流程一、系统架构设计1.1数据采集与预处理模块#数据采集
- 计算机专业毕业设计选题指南(2025创新版)
程序员小天00
课程设计毕业设计小程序pythoneclipsejava
计算机专业毕业设计选题指南(2025创新版)一、选题方向全景图(按技术维度划分)智能服务系统开发技术架构:SpringBoot+Vue3+MySQL/MongoDB典型场景:●智慧校园:实验室预约系统、学术成果可视化平台●医疗健康:电子病历智能分析系统、慢性病管理助手●城市治理:垃圾分类智能识别系统、交通拥堵预测模型创新点:融合OCR识别/NLP技术,实现无感化服务跨平台应用开发技术选型:Unia
- 【零基础学AI】 第10讲:线性回归
1989
0基础学AI人工智能线性回归算法python回归numpy开源
本节课你将学到理解线性回归的原理和应用场景掌握最小二乘法的基本思想使用Python构建房价预测模型学会评估回归模型的性能指标开始之前环境要求Python3.8+JupyterNotebook或任何PythonIDE需要安装的包pipinstallscikit-learnpandasmatplotlibseabornnumpy前置知识第9讲:机器学习概述基本的Python和数据处理能力核心概念什么是
- TVFEMD-CPO-TCN-BiLSTM多输入单输出模型
微光-沫年
matlab回归机器学习
47-TVFEMD-CPO-TCN-BiLSTM多输入单输出模型适合单变量,多变量时间序列预测模型(可改进,加入各种优化算法)时变滤波的经验模态分解TVFEMD时域卷积TCN双向长短期记忆网络BiLSTM时间序列预测模型另外以及有TCN-BILSTMTCN-LSTMTCN-BiLSTM-ATTENTION等!(此不包含在内,另算的!)Matlab代码!
- AI驱动的智能电网:平衡供需提高效率
AI智能应用
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
智能电网,AI,机器学习,预测模型,优化算法,供需平衡,能源效率1.背景介绍随着全球能源需求的不断增长和可再生能源的快速发展,传统电网面临着越来越多的挑战。传统的电网结构是集中式供电,难以适应分布式能源的接入和负荷需求的波动性。智能电网应运而生,它利用先进的通信技术、传感器网络和数据分析技术,实现电网的自动化、智能化和可视化,从而提高电网的可靠性、效率和安全性。人工智能(AI)作为一种新兴技术,在
- 使用大模型预测心力衰竭的全流程系统技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲深度学习机器学习人工智能
目录1.引言背景与意义目标2.术前风险评估与预测数据采集与预处理风险预测模型输出应用3.术中风险实时监测与预警实时数据流处理动态风险预测4.术后恢复与并发症预测恢复轨迹建模并发症防控5.个性化治疗方案制定6.统计分析与模型验证验证方法性能指标7.健康教育与指导方案8.技术架构与实施路径1.引言背景与意义问题现状:心力衰竭(HF)全球患者超千万,中国25岁以上人群患病率1.1%;传统诊疗漏诊率高,预
- 学生成绩信息管理系统的设计与实现(论文+源码)_kaic
开心工作室
计算机文章毕业设计java开发语言springbootperl后端batchswift
摘要近年来,随着国内的高考改革和教育信息化的发展,为了提高学生成绩管理效率和准确性,本文设计并实现了一种学生成绩管理系统,在研究中发现对于学校在管理学生成绩信息的效率上显著提升。现代教育管理中,学生成绩管理系统是必不可少的工具之一。首先,通过对相关文献的综合评估和需求分析,得出了一些适合用户的功能模块,这些模块被认为是最为合适的。采用面向对象的设计方法,选择了具备面向对象特性的Java语言,并使用
- 高中成绩可视化平台开发笔记
一半不眠次日si记
笔记pyqtnumpypandasmatplotlibui数据可视化
高中成绩可视化平台(1)一、项目概述本系统是一个基于PyQt5和Matplotlib的高中成绩数据可视化分析平台,旨在帮助教师快速了解学生成绩分布、班级对比、学科表现等关键指标。平台支持文科与理科的数据切换,并提供多个维度的图表展示和交互式操作。核心功能:文科/理科数据动态切换四个核心分析页面(总览、学科分析、班级分析、排名分析)图表联动刷新机制表格与图表双向绑定自定义样式与视觉美化二、技术选型技
- 大模型在坏疽及穿孔性阑尾炎预测与治疗方案制定中的应用研究
LCG元
围术期危险因子预测模型研究人工智能机器学习深度学习
目录一、引言1.1研究背景与意义1.2研究目的与创新点二、大模型技术概述2.1大模型原理与架构2.2医学领域相关应用案例三、坏疽及穿孔性阑尾炎的术前预测3.1危险因素分析3.2大模型预测模型构建3.3预测结果与临床评估四、基于预测的手术方案制定4.1手术方式选择依据4.2手术步骤与关键要点4.3案例分析五、麻醉方案确定5.1麻醉方式选择5.2麻醉药物使用5.3麻醉过程监测与管理六、术中情况监测与处
- Java数据结构——线性表Ⅰ
爱吃代码的小皇冠
算法数据结构java学习笔记排序算法
《线性表的顺序存储结构》详细学习笔记一、线性表的基本概念1.1线性表的定义线性表是最基础的数据结构之一,其核心特性是元素的有序性和同质性。在实际应用中,线性表可以表示各种有序数据集合,如学生成绩列表、商品清单等。线性表的逻辑结构表示为:(a₀,a₁,...,aᵢ,aᵢ₊₁,...,aₙ₋₁),其中每个元素的序号从0开始,便于算法设计时统一逻辑索引和存储索引。二、线性表的顺序存储结构(顺序表)2.1
- 机器学习之常用的回归预测模型
曼城周杰伦
机器学习机器学习回归人工智能算法
本文全面整理了各种回归预测模型,旨在帮助读者更好地学习回归预测模型。转载自:https://mp.weixin.qq.com/s/7m2waIASOEg90NONgRpQFQ一.线性模型线性回归是一种线性模型,通过特征的线性组合来预测连续值标签。线性回归通过拟合系数(可选择是否设置截距)的线性模型,以最小化真实值和预测值之间的残差平方和。scikit-learnlinear_models:http
- 【Dv2Admin】实现CRUD数据展示和弹窗功能
Mr数据杨
PythonWeb开发djangovue.js学习
在数据驱动的世界中,处理和展示大量复杂数据的需求日益增长。对于开发者来说,如何高效地展示这些数据,并让用户在界面上获得顺畅的交互体验,是一个重要的挑战。本文通过一个学生成绩展示的具体案例,介绍如何通过现代前端技术,借助Vue.js和ElementUI,设计一个简洁且功能强大的数据展示系统。这个系统利用聚合显示和弹窗详细信息展示的方式,解决了数据量大、字段复杂的难题,极大提升了用户的操作体验。文章目
- LSTM价格预测模型:基于技术指标与市场情绪数据
pk_xz123456
仿真模型算法深度学习lstm人工智能rnn深度学习开发语言目标检测神经网络
LSTM价格预测模型:基于技术指标与市场情绪数据一、模型架构设计importnumpyasnpimportpandasaspdimporttensorflowastffromsklearn.preprocessingimportStandardScalerfromtensorflow.keras.modelsimportSequentialfrom
- 【MPC】模型预测控制笔记 (4):约束输出反馈MPC
车队老哥记录生活
模型预测控制MPC笔记算法
目录前言一、观测器设计二、输出反馈MPC设计2.1预测模型2.2代价函数设计2.3约束构建2.3.1系统约束2.3.2终端约束2.4构建二次规划求解三、系统稳定性分析3.1构造李雅普诺夫函数3.2证明李雅普诺夫函数递减四、MATLAB实例前言致谢【模型预测控制(2022春)lecture3-2OutputfeedbackMPC】本文需要是使用先前博客的知识,控制器求解参考【MPC】模型预测控制笔记
- 数据库管理系统的项目实战:图书与成绩管理系统
酷毙的我啊
本文还有配套的精品资源,点击获取简介:数据库管理系统对于存储、管理和检索数据至关重要,而图书管理和学生成绩管理是数据库课程设计的两个典型项目。这些系统的设计通常包括数据库设计、SQL语言应用和前端用户界面开发。图书管理系统专注于图书馆书籍的管理,如入库、出库、借阅和归还操作,涉及书籍信息、借阅者信息和借阅状态的数据库设计。学生成绩管理系统则处理学生的考试和平时成绩,支持成绩的录入、查询、统计和分析
- 另类数据挖掘:如何用网络搜索数据预测上市公司业绩?
量化价值投资入门到精通
数据挖掘人工智能ai
另类数据挖掘:如何用网络搜索数据预测上市公司业绩?关键词:另类数据、网络搜索数据、业绩预测、文本挖掘、机器学习、量化投资、自然语言处理摘要:本文探讨了如何利用网络搜索数据这一另类数据源来预测上市公司业绩。我们将从理论基础出发,详细分析搜索数据与公司业绩之间的关联机制,介绍完整的数据采集、处理和分析流程,并通过实际案例展示如何构建预测模型。文章还将讨论该方法的局限性、实际应用场景以及未来发展方向,为
- 分享100个最新免费的高匿HTTP代理IP
mcj8089
代理IP代理服务器匿名代理免费代理IP最新代理IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
120.198.243.130:80,中国/广东省
58.251.78.71:8088,中国/广东省
183.207.228.22:83,中国/
- mysql高级特性之数据分区
annan211
java数据结构mongodb分区mysql
mysql高级特性
1 以存储引擎的角度分析,分区表和物理表没有区别。是按照一定的规则将数据分别存储的逻辑设计。器底层是由多个物理字表组成。
2 分区的原理
分区表由多个相关的底层表实现,这些底层表也是由句柄对象表示,所以我们可以直接访问各个分区。存储引擎管理分区的各个底层
表和管理普通表一样(所有底层表都必须使用相同的存储引擎),分区表的索引只是
- JS采用正则表达式简单获取URL地址栏参数
chiangfai
js地址栏参数获取
GetUrlParam:function GetUrlParam(param){
var reg = new RegExp("(^|&)"+ param +"=([^&]*)(&|$)");
var r = window.location.search.substr(1).match(reg);
if(r!=null
- 怎样将数据表拷贝到powerdesigner (本地数据库表)
Array_06
powerDesigner
==================================================
1、打开PowerDesigner12,在菜单中按照如下方式进行操作
file->Reverse Engineer->DataBase
点击后,弹出 New Physical Data Model 的对话框
2、在General选项卡中
Model name:模板名字,自
- logbackのhelloworld
飞翔的马甲
日志logback
一、概述
1.日志是啥?
当我是个逗比的时候我是这么理解的:log.debug()代替了system.out.print();
当我项目工作时,以为是一堆得.log文件。
这两天项目发布新版本,比较轻松,决定好好地研究下日志以及logback。
传送门1:日志的作用与方法:
http://www.infoq.com/cn/articles/why-and-how-log
上面的作
- 新浪微博爬虫模拟登陆
随意而生
新浪微博
转载自:http://hi.baidu.com/erliang20088/item/251db4b040b8ce58ba0e1235
近来由于毕设需要,重新修改了新浪微博爬虫废了不少劲,希望下边的总结能够帮助后来的同学们。
现行版的模拟登陆与以前相比,最大的改动在于cookie获取时候的模拟url的请求
- synchronized
香水浓
javathread
Java语言的关键字,可用来给对象和方法或者代码块加锁,当它锁定一个方法或者一个代码块的时候,同一时刻最多只有一个线程执行这段代码。当两个并发线程访问同一个对象object中的这个加锁同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。然而,当一个线程访问object的一个加锁代码块时,另一个线程仍然
- maven 简单实用教程
AdyZhang
maven
1. Maven介绍 1.1. 简介 java编写的用于构建系统的自动化工具。目前版本是2.0.9,注意maven2和maven1有很大区别,阅读第三方文档时需要区分版本。 1.2. Maven资源 见官方网站;The 5 minute test,官方简易入门文档;Getting Started Tutorial,官方入门文档;Build Coo
- Android 通过 intent传值获得null
aijuans
android
我在通过intent 获得传递兑现过的时候报错,空指针,我是getMap方法进行传值,代码如下 1 2 3 4 5 6 7 8 9
public
void
getMap(View view){
Intent i =
- apache 做代理 报如下错误:The proxy server received an invalid response from an upstream
baalwolf
response
网站配置是apache+tomcat,tomcat没有报错,apache报错是:
The proxy server received an invalid response from an upstream server. The proxy server could not handle the request GET /. Reason: Error reading fr
- Tomcat6 内存和线程配置
BigBird2012
tomcat6
1、修改启动时内存参数、并指定JVM时区 (在windows server 2008 下时间少了8个小时)
在Tomcat上运行j2ee项目代码时,经常会出现内存溢出的情况,解决办法是在系统参数中增加系统参数:
window下, 在catalina.bat最前面
set JAVA_OPTS=-XX:PermSize=64M -XX:MaxPermSize=128m -Xms5
- Karam与TDD
bijian1013
KaramTDD
一.TDD
测试驱动开发(Test-Driven Development,TDD)是一种敏捷(AGILE)开发方法论,它把开发流程倒转了过来,在进行代码实现之前,首先保证编写测试用例,从而用测试来驱动开发(而不是把测试作为一项验证工具来使用)。
TDD的原则很简单:
a.只有当某个
- [Zookeeper学习笔记之七]Zookeeper源代码分析之Zookeeper.States
bit1129
zookeeper
public enum States {
CONNECTING, //Zookeeper服务器不可用,客户端处于尝试链接状态
ASSOCIATING, //???
CONNECTED, //链接建立,可以与Zookeeper服务器正常通信
CONNECTEDREADONLY, //处于只读状态的链接状态,只读模式可以在
- 【Scala十四】Scala核心八:闭包
bit1129
scala
Free variable A free variable of an expression is a variable that’s used inside the expression but not defined inside the expression. For instance, in the function literal expression (x: Int) => (x
- android发送json并解析返回json
ronin47
android
package com.http.test;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import
- 一份IT实习生的总结
brotherlamp
PHPphp资料php教程php培训php视频
今天突然发现在不知不觉中自己已经实习了 3 个月了,现在可能不算是真正意义上的实习吧,因为现在自己才大三,在这边撸代码的同时还要考虑到学校的功课跟期末考试。让我震惊的是,我完全想不到在这 3 个月里我到底学到了什么,这是一件多么悲催的事情啊。同时我对我应该 get 到什么新技能也很迷茫。所以今晚还是总结下把,让自己在接下来的实习生活有更加明确的方向。最后感谢工作室给我们几个人这个机会让我们提前出来
- 据说是2012年10月人人网校招的一道笔试题-给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 将重物放到天平左侧,问在两边如何添加砝码
bylijinnan
java
public class ScalesBalance {
/**
* 题目:
* 给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 (假设N无限大,但一种重量的砝码只有一个)
* 将重物放到天平左侧,问在两边如何添加砝码使两边平衡
*
* 分析:
* 三进制
* 我们约定括号表示里面的数是三进制,例如 47=(1202
- dom4j最常用最简单的方法
chiangfai
dom4j
要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:http://nchc.dl.sourceforge.net/sourceforge/dom4j/dom4j-1.6.1.zip
解开后有两个包,仅操作XML文档的话把dom4j-1.6.1.jar加入工程就可以了,如果需要使用XPath的话还需要
- 简单HBase笔记
chenchao051
hbase
一、Client-side write buffer 客户端缓存请求 描述:可以缓存客户端的请求,以此来减少RPC的次数,但是缓存只是被存在一个ArrayList中,所以多线程访问时不安全的。 可以使用getWriteBuffer()方法来取得客户端缓存中的数据。 默认关闭。 二、Scan的Caching 描述: next( )方法请求一行就要使用一次RPC,即使
- mysqldump导出时出现when doing LOCK TABLES
daizj
mysqlmysqdump导数据
执行 mysqldump -uxxx -pxxx -hxxx -Pxxxx database tablename > tablename.sql
导出表时,会报
mysqldump: Got error: 1044: Access denied for user 'xxx'@'xxx' to database 'xxx' when doing LOCK TABLES
解决
- CSS渲染原理
dcj3sjt126com
Web
从事Web前端开发的人都与CSS打交道很多,有的人也许不知道css是怎么去工作的,写出来的css浏览器是怎么样去解析的呢?当这个成为我们提高css水平的一个瓶颈时,是否应该多了解一下呢?
一、浏览器的发展与CSS
- 《阿甘正传》台词
dcj3sjt126com
Part Ⅰ:
《阿甘正传》Forrest Gump经典中英文对白
Forrest: Hello! My names Forrest. Forrest Gump. You wanna Chocolate? I could eat about a million and a half othese. My momma always said life was like a box ochocol
- Java处理JSON
dyy_gusi
json
Json在数据传输中很好用,原因是JSON 比 XML 更小、更快,更易解析。
在Java程序中,如何使用处理JSON,现在有很多工具可以处理,比较流行常用的是google的gson和alibaba的fastjson,具体使用如下:
1、读取json然后处理
class ReadJSON
{
public static void main(String[] args)
- win7下nginx和php的配置
geeksun
nginx
1. 安装包准备
nginx : 从nginx.org下载nginx-1.8.0.zip
php: 从php.net下载php-5.6.10-Win32-VC11-x64.zip, php是免安装文件。
RunHiddenConsole: 用于隐藏命令行窗口
2. 配置
# java用8080端口做应用服务器,nginx反向代理到这个端口即可
p
- 基于2.8版本redis配置文件中文解释
hongtoushizi
redis
转载自: http://wangwei007.blog.51cto.com/68019/1548167
在Redis中直接启动redis-server服务时, 采用的是默认的配置文件。采用redis-server xxx.conf 这样的方式可以按照指定的配置文件来运行Redis服务。下面是Redis2.8.9的配置文
- 第五章 常用Lua开发库3-模板渲染
jinnianshilongnian
nginxlua
动态web网页开发是Web开发中一个常见的场景,比如像京东商品详情页,其页面逻辑是非常复杂的,需要使用模板技术来实现。而Lua中也有许多模板引擎,如目前我在使用的lua-resty-template,可以渲染很复杂的页面,借助LuaJIT其性能也是可以接受的。
如果学习过JavaEE中的servlet和JSP的话,应该知道JSP模板最终会被翻译成Servlet来执行;而lua-r
- JZSearch大数据搜索引擎
颠覆者
JavaScript
系统简介:
大数据的特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。大数据搜索引
- 10招让你成为杰出的Java程序员
pda158
java编程框架
如果你是一个热衷于技术的
Java 程序员, 那么下面的 10 个要点可以让你在众多 Java 开发人员中脱颖而出。
1. 拥有扎实的基础和深刻理解 OO 原则 对于 Java 程序员,深刻理解 Object Oriented Programming(面向对象编程)这一概念是必须的。没有 OOPS 的坚实基础,就领会不了像 Java 这些面向对象编程语言
- tomcat之oracle连接池配置
小网客
oracle
tomcat版本7.0
配置oracle连接池方式:
修改tomcat的server.xml配置文件:
<GlobalNamingResources>
<Resource name="utermdatasource" auth="Container"
type="javax.sql.DataSou
- Oracle 分页算法汇总
vipbooks
oraclesql算法.net
这是我找到的一些关于Oracle分页的算法,大家那里还有没有其他好的算法没?我们大家一起分享一下!
-- Oracle 分页算法一
select * from (
select page.*,rownum rn from (select * from help) page
-- 20 = (currentPag