【生物信息学】scRNA-seq数据分析(一):质控~细胞筛选~高表达基因筛选

文章目录

  • 一、实验介绍
  • 二、实验环境
    • 1. 配置虚拟环境
    • 2. 库版本介绍
  • 三、实验内容
    • 0. 导入必要的库
    • 1. 质控
    • 2. 细胞筛选
    • 3. 高表达基因筛选

一、实验介绍

  质控~ 细胞筛选 ~高表达基因筛选

二、实验环境

1. 配置虚拟环境

  可使用如下指令:

conda create -n bio python==3.9
conda activate bio
pip install -r requirements.txt

  其中,requirements.txt:

numpy==1.21.5
pandas==1.4.4
scanpy==1.9.6

2. 库版本介绍

软件包 本实验版本
numpy 1.21.5
pandas 1.4.4
python 3.8.16
scanpy 1.9.6
scipy 1.10.1
seaborn 0.12.2

三、实验内容

0. 导入必要的库

import numpy as np
import pandas as pd
import scanpy as sc
  • Scanpy是一个用于单细胞RNA测序数据分析的Python库,提供了许多功能和工具来处理和分析单细胞数据

1. 质控

# 设置Scanpy参数
sc.settings.verbosity = 3
sc.logging.print_header()
sc.settings.set_figure_params(dpi=80, facecolor='white')

# 定义结果文件路径
results_file = 'write/pbmc3k.h5ad'

# 读取单细胞数据
adata = sc.read_10x_mtx(
    'data/filtered_gene_bc_matrices/hg19/',  # 数据目录
    var_names='gene_symbols',                # 使用基因符号作为变量名
    cache=True)                              # 写入缓存文件以便后续更快读取

# 确保基因名唯一
adata.var_names_make_unique()

# 绘制展示高度表达的基因
sc.pl.highest_expr_genes(adata, n_top=20)

在这里插入图片描述

【生物信息学】scRNA-seq数据分析(一):质控~细胞筛选~高表达基因筛选_第1张图片

2. 细胞筛选

# 过滤细胞和基因
sc.pp.filter_cells(adata, min_genes=200)
sc.pp.filter_genes(adata, min_cells=3)

# 标记线粒体基因
adata.var['mt'] = adata.var_names.str.startswith('MT-')

# 计算质量控制指标
sc.pp.calculate_qc_metrics(adata, qc_vars=['mt'], percent_top=None, log1p=False, inplace=True)

# 绘制质量控制指标的小提琴图和散点图
sc.pl.violin(adata, ['n_genes_by_counts', 'total_counts', 'pct_counts_mt'], jitter=0.4, multi_panel=True)
sc.pl.scatter(adata, x='total_counts', y='pct_counts_mt')
sc.pl.scatter(adata, x='total_counts', y='n_genes_by_counts')

【生物信息学】scRNA-seq数据分析(一):质控~细胞筛选~高表达基因筛选_第2张图片

【生物信息学】scRNA-seq数据分析(一):质控~细胞筛选~高表达基因筛选_第3张图片
【生物信息学】scRNA-seq数据分析(一):质控~细胞筛选~高表达基因筛选_第4张图片
【生物信息学】scRNA-seq数据分析(一):质控~细胞筛选~高表达基因筛选_第5张图片

3. 高表达基因筛选

# 进一步的过滤和归一化
adata = adata[adata.obs.n_genes_by_counts < 2500, :]
adata = adata[adata.obs.pct_counts_mt < 5, :]

# 总计数归一化
sc.pp.normalize_total(adata, target_sum=1e4)

# 对数变换
sc.pp.log1p(adata)

# 特征选择:识别高度变异的基因
sc.pp.highly_variable_genes(adata, min_mean=0.0125, max_mean=3, min_disp=0.5)

# 绘制高度变异基因的图
sc.pl.highly_variable_genes(adata)

# 设置.raw属性
adata.raw = adata

# 实际过滤数据
adata = adata[:, adata.var.highly_variable]

# 数据回归处理和标准化
sc.pp.regress_out(adata, ['total_counts', 'pct_counts_mt'])
sc.pp.scale(adata, max_value=10)

【生物信息学】scRNA-seq数据分析(一):质控~细胞筛选~高表达基因筛选_第6张图片

你可能感兴趣的:(数据分析,数据挖掘)