树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。
M(M>0)
个互不相交的集合T1、T2、……、Tm
,其中每一个集合Ti(1<= i <= m)
又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继A
的为6
0
的节点称为叶节点; 如上图:B、C、H、I...
等节点为叶节点0
的节点; 如上图:D、E、F、G...
等节点为分支节点A
是B
的父节点B
是A
的孩子节点B、C
是兄弟节点6
1
层,根的子节点为第2
层,以此类推;4
H、I
互为兄弟节点A
是所有节点的祖先A
的子孙m(m>0)
棵互不相交的树的集合称为森林;树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既要保存值域,也要保存结点和结点之间的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。我们这里就简单的了解其中最常用的孩子兄弟表示法。
typedef int DataType;
struct Node
{
struct Node* _firstChild1; // 第一个孩子结点
struct Node* _pNextBrother; // 指向其下一个兄弟结点
DataType _data; // 结点中的数据域
};
一棵二叉树是结点的一个有限集合,该集合:
- 或者为空
- 由一个根节点加上两棵别称为左子树和右子树的二叉树组成
从上图可以看出:
- 二叉树不存在度大于
2
的结点- 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
注意:对于任意的二叉树都是由以下几种情况复合而成的:
K
,且结点总数是 2k - 1,则它就是满二叉树。K
的,有n
个结点的二叉树,当且仅当其每一个结点都与深度为K
的满二叉树中编号从1
至n
的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。1
,则一棵非空二叉树的第i
层上最多有 2(i-1) 个结点.1
,则深度为h
的二叉树的最大结点数是 2h - 1.0
其叶结点个数为 n0, 度为2的分支结点个数为n2 ,则有 n0 = n2+11
,具有n个结点的满二叉树的深度,h=log2(n+1). (ps:log2(n+1) 是log以2为底,n+1为对数)n
个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0
开始编号,则对(i-1)/2
;i=0,i为根节点编号,无双亲节点【例题】
1. 某二叉树共有 399 个结点,其中有 199 个度为 2 的结点,则该二叉树中的叶子结点数为( )
A 不存在这样的二叉树
B 200
C 198
D 199
2.下列数据结构中,不适合采用顺序存储结构的是( )
A 非完全二叉树
B 堆
C 队列
D 栈
3.在具有 2n 个结点的完全二叉树中,叶子结点个数为( )
A n
B n+1
C n-1
D n/2
4.一棵完全二叉树的节点数位为531个,那么这棵树的高度为( )
A 11
B 10
C 8
D 12
5.一个具有767个节点的完全二叉树,其叶子节点个数为()
A 383
B 384
C 385
D 386
答案:
1.B
我们知道二叉树的结点数为 399,其中有 199 个度为 2 的结点。那么剩下的结点数就是 399-199 =200,这些结点构成了叶子。
所以该二叉树中的叶子结点数为 200,答案是 B.
2.A
在数据结构中,顺序存储结构主要通过数组形式保存数据,并按照一定的顺序进行存储。
然而,不同的数据结构适应的顺序存储方式可能不同。
对于非完全二叉树来说,由于其可能存在空间的浪费,一般只适合采用顺序存储表示完全二叉树。
另一方面,堆、队列以及栈都可以使用顺序存储结构来进行存储。
所以,不适合采用顺序存储结构的数据结构是A. 非完全二叉树。
3.A
4.B
完全二叉树是一种特殊的二叉树,其中除了最后一层外,其他层的结点数都达到最大,且最后一层的结点都连续集中在最左边。
对于一棵具有n个结点的完全二叉树,其高度为:
h = log2(n+1)
因此,当n=531时,高度h为:
h = log2(531+1) = log2(532) > 9 且 log2(532) < 10
故 h应该等于10
所以答案为B。
5.B
二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。
顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实中使用中只有堆才会使用数组来存储,关于堆下一篇我会为大家专门讲解。二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树。
二叉树的链式存储结构是指:用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。通常的方法是链表中每个结点由三个域组成,数据域
和左右指针域
,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址。链式结构又分为二叉链和三叉链,当前我们学习中一般都是二叉链,后面学到高阶数据结构如红黑树等会用到三叉链。
typedef int BTDataType;
// 二叉链
struct BinaryTreeNode
{
struct BinTreeNode* _pLeft; // 指向当前节点左孩子
struct BinTreeNode* _pRight; // 指向当前节点右孩子
BTDataType _data; // 当前节点值域
}
// 三叉链
struct BinaryTreeNode
{
struct BinTreeNode* _pParent; // 指向当前节点的双亲
struct BinTreeNode* _pLeft; // 指向当前节点左孩子
struct BinTreeNode* _pRight; // 指向当前节点右孩子
BTDataType _data; // 当前节点值域
};
此处我仅给大家简单介绍了一下二叉树的一些该概念和性质,后续树的详细知识点也将就此展开!