力扣746. 使用最小花费爬楼梯--理解题意合理使用动态规划与滚动数组

746. 使用最小花费爬楼梯

数组的每个索引作为一个阶梯,第 i个阶梯对应着一个非负数的体力花费值 costi。

每当你爬上一个阶梯你都要花费对应的体力花费值,然后你可以选择继续爬一个阶梯或者爬两个阶梯。

您需要找到达到楼层顶部的最低花费。在开始时,你可以选择从索引为 0 或 1 的元素作为初始阶梯。

示例 1:

输入: cost = [10, 15, 20]
输出: 15
解释: 最低花费是从cost[1]开始,然后走两步即可到阶梯顶,一共花费15。
示例 2:

输入: cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1]
输出: 6
解释: 最低花费方式是从cost[0]开始,逐个经过那些1,跳过cost[3],一共花费6。
注意:

cost 的长度将会在 [2, 1000]。
每一个 cost[i] 将会是一个Integer类型,范围为 [0, 999]。

题解:

  • 本题主要难在理解题意,因为题目说的太含糊不清,让我以为是开始在第一个楼梯当起点,就得先花费它的力气,然后去下一个楼梯上,还得花费与之对应的力气。
  • 因此我在本来楼梯的基础上又加了两个楼梯,一个加在最下面,一个加在最上面,他们消耗的力气都是0,然后以此为基准对cost和原先构思的基本dp进行扩充。
  • 但其实原来cost给的是迈出该阶楼梯所需要的力气,本以为是迈入该阶楼梯所需要的力气

理解题意后即:

“每次你可以往前跳跃一个或者两个,当你跳跃的时候,你会花费掉你当前位的体力”

  • 所以可列出dp方程: (i为楼梯下标,dp为花费的力气求和)

  • dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2])

法一:动态规划

Java:

class Solution {
    public int minCostClimbingStairs(int[] cost) {
        int n = cost.length;
        int[] dp = new int[n + 1];
        dp[0] = dp[1] = 0;
        for (int i = 2; i <= n; i++) {
            dp[i] = Math.min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
        }
        return dp[n];
    }
}

C:

inline int min(int x,int y)//使用内联函数增加效率
{
    return x<y?x:y;
}
int minCostClimbingStairs(int* cost, int costSize){
    int dp[costSize+1];//因为实际的楼梯要多一节
    dp[0]=0;//理解好题意,刚开始在自己选的起点,所以不用力气
    dp[1]=0;//当走向下一步时才会需要消耗自己在这个对应阶梯下标的力气
    for(int i=2;i<=costSize;i++)
    {
        dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
    }
    return dp[costSize];
}

力扣746. 使用最小花费爬楼梯--理解题意合理使用动态规划与滚动数组_第1张图片

法二:动态规划滚动数组

  • 以空间换取时间
inline int min(int x,int y)
{
    return x<y?x:y;
}
int minCostClimbingStairs(int* cost, int costSize){
    int first,second;
    first=0;
    second=0;
    for(int i=2;i<=costSize;i++)
    {
        int temp = second;
        second=min(second+cost[i-1],first+cost[i-2]);
        first=temp;
    }
    return second;
}

力扣746. 使用最小花费爬楼梯--理解题意合理使用动态规划与滚动数组_第2张图片

你可能感兴趣的:(Leetcode每日刷题,#,动态规划,动态规划,算法)