- AF3 rot_matmul 和 rot_vec_mul函数解读
qq_27390023
生物信息学深度学习pytorchpython
AlphaFold3rigid_utils模块的rot_matmul和rot_vec_mul函数实现了手动计算两个旋转矩阵的乘法A×B以及矩阵-向量乘法R×t,避免了直接用矩阵乘法的AMP(AutomaticMixedPrecision)问题。源代码:defrot_matmul(a:torch.Tensor,b:torch.Tensor)->torch.Tensor:"""Performsmatr
- 无矩阵乘法LLM:效率与性能双突破
XianxinMao
人工智能矩阵人工智能线性代数
标题:无矩阵乘法LLM:效率与性能双突破文章信息摘要:无矩阵乘法的LLMs通过创新技术替代传统矩阵乘法操作,显著降低了计算成本,减少了对GPU的依赖。这种模型在内存使用和延迟方面表现优异,尤其在大规模模型上效率显著提升。例如,13B参数的模型仅需4.19GBGPU内存,延迟低至695.48ms,远优于传统模型。此外,基于FPGA的硬件优化进一步提升了性能,1.3B参数模型功耗仅为13W,达到人类阅
- 计算机视觉(Computer Vision, CV)的入门到实践的详细学习路线
云梦优选
计算机数据库大数据计算机视觉学习人工智能
一、基础准备1.数学基础线性代数深入矩阵运算,理解矩阵乘法、转置、逆等基本概念。掌握特征值与特征向量的几何意义,理解其在图像压缩、特征提取中的应用。学习奇异值分解(SVD)及其在降维和数据压缩中的具体应用。概率与统计熟悉贝叶斯定理及其在分类任务中的应用,如朴素贝叶斯分类器。理解常见概率分布(如正态分布、二项分布)及其性质。学习统计推断方法,如假设检验、置信区间估计,以评估模型性能。微积分掌握梯度、
- 数学 :矩阵
极客 - L U
数学矩阵线性代数
文章目录前言1.基本矩阵运算1.1矩阵加法1.2矩阵减法1.3矩阵乘法2.转置矩阵3.旋转矩阵小结【全文大纲】:https://blog.csdn.net/Engineer_LU/article/details/135149485前言在许多应用场合下,我们都需要用矩阵来表示公式,接下来简洁描述矩阵用法1.基本矩阵运算1.1矩阵加法∣a1b1c1d1∣+∣a2b2c2d2∣=∣a1+a2b1+b2c
- 深度学习 Deep Learning 第2章 线性代数
odoo中国
AI编程人工智能深度学习线性代数人工智能
深度学习第2章线性代数线性代数是深度学习的语言。张量操作是神经网络计算的基石,矩阵乘法是前向传播的核心,范数约束模型复杂度,而生成空间理论揭示模型表达能力的本质。本章介绍线性代数的基本内容,为进一步学习深度学习做准备。主要内容2.1标量、向量、矩阵和张量标量:单个数字,用斜体表示,通常赋予小写字母变量名。向量:数字数组,按顺序排列,用粗体小写字母表示,元素通过下标访问。矩阵:二维数字数组,用粗体大
- NPU的工作原理:神经网络计算的流水线
绿算技术
NPU架构介绍神经网络人工智能深度学习
NPU的工作原理可以概括为以下几个步骤:1.模型加载·将训练好的神经网络模型加载到NPU的内存中。2.数据输入·输入数据(如图像、语音)通过接口传输到NPU。3.计算执行·NPU根据模型结构,依次执行卷积、池化、全连接等计算任务。·矩阵乘法单元和卷积加速器并行工作,高效完成计算。4.结果输出·计算完成后,输出结果(如分类标签、检测框)返回给主机或其他处理器。5.任务调度·在多任务场景下,NPU的任
- 形象理解线性代数的本质(三) 矩阵的升维和降维
_躬行_
线性代数机器学习基础矩阵线性代数
引子:降维打击科幻小说《三体》里一种很魔幻的攻击方法——降维打击,以其神奇的作用方式和巨大的威力刷新了我们的三观。而在矩阵乘法计算中,这种降维打击时刻存在着。本节讲解一下矩阵乘法中造成的升维和降维。一、矩阵的降维还用游戏的例子,有4个角色,每个人都有不同的能力,将其用矩阵表示出来现在我们要评估他们的两种能力:领兵打仗的能力和协同将领的能力只要将两个矩阵相乘,就能根据方法X对象的法则评估出他们这两种
- 【蓝桥杯学习笔记】12.数据结构——单调栈
Master_L u
蓝桥杯python蓝桥杯
系列文章目录【蓝桥杯学习笔记】1.入门基本语法及练习题【蓝桥杯学习笔记】2.常用模型----最大公约数和最小公倍数【蓝桥杯学习笔记】3.质数判断【蓝桥杯学习笔记】5.矩阵乘法【蓝桥杯学习笔记】6.一图看懂差分数组+《小明的彩灯》【蓝桥杯学习笔记】7.哈曼夫树【蓝桥杯学习笔记】8.itertools-为高效循环而创建迭代器的函数【蓝桥杯学习笔记】9.解立方根——二分法+牛顿迭代法【蓝桥杯学习笔记】1
- 探讨矩阵:从基础到应用
LIUJH1233
矩阵算法线性代数c++
一.矩阵的定义由n×m个数aij排成的n行m列的数表称为n行m列的矩阵,简称n×m矩阵。记作:二.矩阵的基本运算2.1矩阵加法矩阵加法一般是指两个矩阵把其相对应元素加在一起的运算。(一般来说,两个矩阵行列相等,包括减法也是)2.2矩阵减法矩阵减法与加法类似,也是对两个同型矩阵对应位置的元素相减。2.3矩阵乘法若有一个x行y列的矩阵与一个y行z列的矩阵,他们就可以相乘,得到一个x行z列的矩阵。但是,
- 人工智能之数学基础:线性代数中的特殊矩阵
每天五分钟玩转人工智能
机器学习深度学习之数学基础线性代数人工智能矩阵机器学习线性空间深度学习
本文重点矩阵是数学中一个重要的工具,在各个领域都有广泛的应用。其中,一些特殊矩阵由于具有独特的性质,在特定的问题中发挥着关键作用。单位矩阵单位矩阵是一种特殊的方阵,在矩阵乘法中起到类似于数字“1”的作用。对于一个的单位矩阵,其主对角线元素全为1,其余元素全为0。性质对于任意一个nxn的矩阵A,有AxI=IxA=A。这表明单位矩阵与任何同阶矩阵相乘都不改变该矩阵。单位矩阵是可逆的,且其逆矩阵就是它本
- 【大模型】fp32 和 fp16 的区别,混合精度的原理。
深度求索者
pythonpytorch
LLMs浮点数一、fp32和fp16的区别,混合精度的原理1.fp32与fp16的对比特性fp32(单精度)fp16(半精度)位数32位(4字节)16位(2字节)内存占用高低(仅为fp32的50%)数值范围约±3.4×10³⁸约±6.5×10⁴精度(尾数)23位(约7位有效十进制数)10位(约3位有效十进制数)用途高精度计算(如梯度更新)高效计算(如矩阵乘法)2.混合精度训练的原理核心思想:结合f
- 科技快讯 | DeepSeek宣布开源DeepGEMM;多个团队开发AI论文反识别技术;OpenAI GPT 4.5现身Android测试版,即将发布
最新科技快讯
科技
DeepSeek宣布开源DeepGEMM财联社2月26日电,Deepseek于开源周第三天宣布开源DeepGEMM。DeepGEMM是一个专为简洁高效的FP8通用矩阵乘法(GEMM)设计的库,具有细粒度缩放功能,如DeepSeek-V3中所提出。它支持普通和混合专家(MoE)分组的GEMM。该库采用CUDA编写,在安装过程中无需编译,通过使用轻量级的即时编译(JIT)模块在运行时编译所有内核。FP
- 【深度学习】矩阵的核心问题&解析
大数据追光猿
数学基础-矩阵深度学习矩阵人工智能
一、基础问题1.如何实现两个矩阵的乘法?问题描述:给定两个矩阵AAA和BBB,编写代码实现矩阵乘法。解法:使用三重循环实现标准矩阵乘法。或者使用NumPy的dot方法进行高效计算。defmatrix_multiply(A,B):m,n=len(A),len(A[0])n,p=len(B),len(B[0])C=[[0for_inrange(p)]for_inrange(m)]foriinrange
- python中的“@”与“*”运算符
汤姆_布利柏
pythonnumpy
1、@运算符@运算符是对矩阵进行矩阵乘法(即数学上的矩阵相乘)来用的。1.1、二维方阵生成二维矩阵a和b:importnumpyasnpa=np.arange(1,10).reshape(3,3)print(a)print(a.shape)print(type(a))print(a.dtype)[[123][456][789]](3,3)int32b=np.array(np.arange(0,9)
- python中@运算符和*运算符在矩阵乘法中的区别与作用
zeeq_
python矩阵python线性代数
我们在看python程序时,经常可以看到@运算符和*运算符,其中@运算符在传统python中通常是作为装饰器使用的。但是在Python3.5之后,它又具备了矩阵乘法运算的功能。下面使用示例来对比这两个运算符对矩阵运算的影响: 导入用到numpy包:importnumpyasnp 创建一个维度为2×3×3的数组a,结果如下图所示:a=np.arange(1,10).reshape(
- Python 中@ 矩阵乘法运算符详细讲解
Charonrise
python矩阵开发语言
在Python中,@是矩阵乘法运算符,它用于矩阵与矩阵之间的乘法运算,也可以用于矩阵与向量之间的乘法。它是在Python3.5中引入的,用来专门处理线性代数中的矩阵乘法运算。1.基本用法@运算符的作用等价于numpy中的np.dot()或np.matmul()函数。例如:importnumpyasnp#定义两个矩阵A=np.array([[1,2],[3,4]])B=np.array([[5,6]
- DeepSeek开源周合集
Vip.Gong
人工智能transformerchatgpt文心一言pythonscikit-learn深度学习
周一:FlashMLA,核心成就:GPU带宽利用接近理论极限,算力利用效率翻倍;周二:DeepEP,一个高效的MOE架构专家并行通信库:支持高效且优化后的全对全通信使用NVlink和RDMA进行节点内和节点间通信用于训练和推理填充的高吞吐量内核用于推理解码的低延迟内核原生支持FP8操作实现灵活的GPU资源控制,实现计算与通信重叠周三:DeepGEMM,一个通用的GEMM广义矩阵乘法库,支持FP8精
- DeepSeep开源周,第三天:DeepGEMM是啥?
程序员差不多先生
pytorch
DeepGEMM是Deepseek开源的一个高性能矩阵乘法优化库,专为深度学习场景设计。矩阵乘法(GEMM)是深度学习模型的核心运算(如全连接层、卷积层等),其性能直接影响训练和推理效率。DeepGEMM通过算法优化、硬件指令集加速和并行计算技术,显著提升计算速度,适用于GPU、CPU等硬件平台。对开发者的用处性能提升优化计算密集型任务(如LLM训练/推理),降低延迟,提升吞吐量。支持混合精度计算
- 第5关:线性代数
-阿呆-
#numpy数组的高级操作线性代数矩阵python
任务描述本关任务:编写一个能求解线性方程的函数。相关知识为了完成本关任务,你需要掌握:如何使用numpy进行矩阵运算点积和matmul的区别。numpy的线性代数线性代数(如矩阵乘法、矩阵分解、行列式以及其他方阵数学等)是任何数组库的重要组成部分,一般我们使用*对两个二维数组相乘得到的是一个元素级的积,而不是一个矩阵点积。因此numpy提供了线性代数函数库linalg,该库包含了线性代数所需的所有
- 蓝桥杯真题训练 五一 4/5
iuk11
蓝桥杯刷题
1217垒骰子矩阵快速幂op[i]表示的是与i的对面的数。如果有面互斥,就在矩阵中标记为零,否则标记为4,代表顶和底确定的时候可以有四种情况。(矩阵乘法)就是快速幂里面的乘法变成了矩阵乘法。#includeusingnamespacestd;constintmod=1e9+7;typedeflonglongll;constintmaxn=6;lln,m;inta,b;intvis[7][7];in
- 6.3:Matlab中二维数组的基本运算(加减乘除)(课程共5300字,4段代码举例,带详细操作步骤)
小兔子平安
Matlab完整学习全解答matlab机器学习开发语言
例子1:逐元素加法运算(Code①)例子2:矩阵乘法运算(Code②)例子3:逐元素除法运算(Code③)例子4:矩阵减法运算(Code④)——例子1:逐元素加法运算(Code①)%代码示例1:逐元素加法运算A=[123;456;789];B=[101112;131415;161718];C=A+B;disp(C);操作步骤:①打开Matlab软件;②创建一个名为A的二维数组,赋值为[123;45
- Winograd 算法原理推导和python程序
weixin_47696437
算法python人工智能
一、算法背景Winograd算法是一种用于高效计算卷积的算法,其核心思想是通过减少乘法运算的次数来提高卷积计算的效率。在传统的卷积计算中,乘法运算的开销较大,而Winograd算法通过巧妙的变换,将卷积运算转化为在变换域中的矩阵乘法,从而减少乘法的数量,虽然会引入一些额外的加法和变换操作,但整体上在计算效率上有显著提升。二、一维卷积的Winograd推导2.Winograd优化通过多项式变换减少乘
- 一文读懂!深度学习 + PyTorch 的超实用学习路线
a小胡哦
深度学习pythonpytorch
深度学习作为人工智能领域的核心技术,正深刻改变着诸多行业。PyTorch则是深度学习实践中备受青睐的框架,它简单易用且功能强大。下面就为大家详细规划深度学习结合PyTorch的学习路线。一、基础知识储备数学基础数学是很重要的!!!线性代数、概率论与数理统计、微积分是深度学习的数学基石。熟悉矩阵运算、概率分布、梯度计算等概念,能帮助理解深度学习模型的原理。例如,在神经网络中,矩阵乘法用于神经元之间的
- 人工智能的本质解构:从二进制桎梏到造物主悖论
Somnolence.·.·.·.
人工智能人工智能ai
一、数学牢笼中的困兽:人工智能的0-1本质人工智能的底层逻辑是数学暴力的具象化演绎。晶体管开关的物理震荡被抽象为布尔代数的0-1序列,冯·诺依曼架构将思维简化为存储器与运算器的机械对话。即使深度神经网络看似模拟人脑突触,其本质仍是矩阵乘法的迭代游戏——波士顿动力机器人的空翻动作不过是微分方程求解的物理引擎呈现,AlphaGo的围棋神话只是蒙特卡洛树搜索的概率统计。这种基于有限离散数学的架构,注定人
- 2.【线性代数】——矩阵消元
sda42342342423
math线性代数矩阵
二矩阵消元1.消元法2.单行或者单列的矩阵乘法2.1单行矩阵乘法2.2单列矩阵乘法3.用矩阵记录消元过程(初等矩阵)【行的线性组合(数乘和加法)】3.1row2-3row1的矩阵描述3.2row3-2row2的矩阵描述3.3矩阵乘法的性质4.用矩阵记录消元过程(置换矩阵)行列交换4.1行交换4.1列交换5.逆矩阵1.消元法求解方程组{x+2y+z=23x+8y+z=124y+z=2\begin{c
- pytorch笔记:mm VS bmm
UQI-LIUWJ
pytorch学习pytorch笔记人工智能
1bmm(batchmatrixmultiplication)批量矩阵乘法,用于同时处理多个矩阵的乘法bmm的输入是两个3D张量(batchofmatrices),形状分别为(batch_size,n,m)和(batch_size,m,p)bmm输出的形状是(batch_size,n,p)2mmmm是标准的矩阵乘法操作,用于两个二维矩阵相乘mm仅适用于2D张量,输入的形状分别是(n,m)和(m,p
- CUDA与CUDPP源码解析及实战应用
昊叔Crescdim
本文还有配套的精品资源,点击获取简介:CUDA是NVIDIA推出的并行计算平台,CUDPP是一个提供GPU优化算法的开源库。本课程将深入解析CUDPP的核心组件,包括基数排序、扫描操作、动态并行性、随机数生成、缓存机制、矩阵乘法和基准测试等。通过学习CUDPP源码,开发者可以掌握GPU并行计算的优化技巧,提升应用程序性能。同时,本课程也会介绍如何在具备CUDASDK和NVIDIA驱动的系统上安装和
- python基础入门:附录:常用第三方库推荐(NumPy、Django等)
赵鑫亿
python基础入门pythonnumpydjango
Python常用第三方库全景指南:从基础到前沿工具集一、数据科学核心套件数值计算三剑客#NumPy数组操作示例importnumpyasnparr=np.arange(1,10).reshape(3,3)print(
[email protected])#矩阵乘法#Pandas数据分析示例importpandasaspddf=pd.DataFrame({'A':np.random.randn(100),'B':np
- [数据结构]算法复杂度详解
疑惑的杰瑞
C算法c语言数据结构
文章目录一、引言1、想象数据结构与算法的奇妙世界2、算法复杂度的轻松解读3、数据结构与算法的温馨寄语二、轻松掌握复杂度基础1、时间复杂度:算法速度的衡量尺2、空间复杂度:算法占地的衡量尺3、常见的复杂度三、复杂度的计算1、时间复杂度计算2、空间复杂度计算3、最好、最坏、平均复杂度四、C语言中的复杂度分析实例1、求和函数2、冒泡排序3、矩阵乘法4、递归计算斐波拉契数五、扩展阅读一、引言1、想象数据结
- 【数学】矩阵、向量(内含矩阵乘法C++)
JuRuo_Yuan
蒟蒻讲数学算法矩阵c++线性代数
目录一、前置知识:向量(一列或一行的矩阵)、矩阵1.行向量2.列向量3.向量其余基本概念4.矩阵基本概念5.关于它们的细节二、运算1.转置(1)定义(2)性质2.矩阵(向量)与矩阵(向量)的加减法3.点乘与乘法(1)定义:矩阵点乘(2)定义:向量点乘(3)定义:矩阵(向量)与标量的乘法(4)定义:矩阵(向量)与矩阵(向量)的乘法(5)性质:矩阵(向量)与矩阵(向量)的乘法(6)应用:矩阵快速幂,进
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多