Unity中实现ShaderToy卡通火(移植篇)

文章目录

  • 前言
  • 一、准备好我们的后处理基础脚本
    • 1、C#:
    • 2、Shader:
  • 二、开始逐语句对ShaderToy进行转化
    • 1、首先,找到我们的主函数 mainImage
    • 2、其余的方法全部都是在 mainImage 函数中调用的方法
    • 3、替换后的代码(已经没报错了,但是效果不对)
  • 三、我们来调试一下Shader,看看问题出在了哪?
    • 1、return float4(col, 1.0);
    • 2、black or fire
    • 3、getDepth函数
  • 四、修改 STEPS 的数值出错问题
    • 法1:在属性面板增加 STEPS 参数,赋予初始值4
    • 法2:使用#define 预定义一个常量
  • 五、最终代码


前言

在上一篇文章中,我们讲解了基础的ShaderToy怎么转化为Unity中的Shader。我们在这篇文章中,复刻一个复杂的ShaderToy效果卡通火。

  • Unity中的ShaderToy

  • 卡通火


一、准备好我们的后处理基础脚本

1、C#:

using UnityEngine;

//后处理脚本
[ExecuteInEditMode]
public class P2_9 : MonoBehaviour
{
    public Shader PostProcessingShader;
    private Material mat;
    public Material Mat
    {
        get
        {
            if (PostProcessingShader == null)
            {
                Debug.LogError("没有赋予Shader");
                return null;
            }
            if (!PostProcessingShader.isSupported)
            {
                Debug.LogError("当前Shader不支持");
                return null;
            }
            //如果材质没有创建,则根据Shader创建材质,并给成员变量赋值存储
            if (mat == null)
            {
                Material _newMaterial = new Material(PostProcessingShader);
                _newMaterial.hideFlags = HideFlags.HideAndDontSave;
                mat = _newMaterial;
                return _newMaterial;
            }
            return mat;
        }
    }

    private void OnRenderImage(RenderTexture source, RenderTexture destination)
    {
        Graphics.Blit(source,destination,Mat);
    }
}

2、Shader:

Shader "MyShader/P2_9"
{
    SubShader
    {
        // No culling or depth
        Cull Off ZWrite Off ZTest Always

        Pass
        {
            CGPROGRAM
            #pragma vertex vert_img
            #pragma fragment frag
            #include "UnityCG.cginc"
            
            fixed4 frag (v2f_img i) : SV_Target
            {
                
                return 1;
            }
            ENDCG
        }
    }
}

二、开始逐语句对ShaderToy进行转化

1、首先,找到我们的主函数 mainImage

void mainImage( out vec4 fragColor, in vec2 fragCoord )
{
	vec2 uv = fragCoord.xy / iResolution.xy;
    uv.x *= 4.0;
    float t = iTime * 3.0;    
    vec3 col = vec3(0);
    
   	float noise = getNoise(uv, t);
    
    //shape cutoff to get higher further up the screen
    CUTOFF = uv.y;    
    //and at horiz edges
    CUTOFF += pow(abs(uv.x*0.5 - 1.),1.0);   
    
    //debugview cutoff field
    //fragColor = vec4(vec3(CUTOFF),1.0);   
    
    if (noise < CUTOFF){       
		//black
        col = vec3(0.);
    }else{
		//fire
        float d = pow(getDepth(noise),0.7);        
        vec3 hsv = vec3(d *0.17,0.8 - d/4., d + 0.8);
        col = hsv2rgb(hsv);
	}
    
    fragColor = vec4(col,1.0);   
}

2、其余的方法全部都是在 mainImage 函数中调用的方法

因此,我们可以直接使用把这些方法复制到 我们片元着色器的上方,把参数类型转化为CG中的参数类型,即可直接使用

  • vec2 :float2
  • vec3 :float3
  • vec4 :float4
  • float4(0,0) : 0
  • fract(x) : frac(x) (取 x 的小数部分)
  • mix(a,b,x) :lerp(a,b,x) (线性插值)

选中需要转化的变量名,使用快捷键 Ctrl + F,进行全部替换

Unity中实现ShaderToy卡通火(移植篇)_第1张图片

3、替换后的代码(已经没报错了,但是效果不对)

//https://www.shadertoy.com/view/lsscWr

Shader "MyShader/P2_9"
{
    SubShader
    {
        // No culling or depth
        Cull Off ZWrite Off ZTest Always

        Pass
        {
            CGPROGRAM
            #pragma vertex vert_img
            #pragma fragment frag
            #include "UnityCG.cginc"

            float3 mod289(float3 x)
            {
                return x - floor(x * (1.0 / 289.0)) * 289.0;
            }

            float4 mod289(float4 x)
            {
                return x - floor(x * (1.0 / 289.0)) * 289.0;
            }

            float4 permute(float4 x)
            {
                return mod289(((x * 34.0) + 1.0) * x);
            }

            float4 taylorInvSqrt(float4 r)
            {
                return 1.79284291400159 - 0.85373472095314 * r;
            }

            float snoise(float3 v)
            {
                const float2 C = float2(1.0 / 6.0, 1.0 / 3.0);
                const float4 D = float4(0.0, 0.5, 1.0, 2.0);

                // First corner
                float3 i = floor(v + dot(v, C.yyy));
                float3 x0 = v - i + dot(i, C.xxx);

                // Other corners
                float3 g = step(x0.yzx, x0.xyz);
                float3 l = 1.0 - g;
                float3 i1 = min(g.xyz, l.zxy);
                float3 i2 = max(g.xyz, l.zxy);

                //   x0 = x0 - 0.0 + 0.0 * C.xxx;
                //   x1 = x0 - i1  + 1.0 * C.xxx;
                //   x2 = x0 - i2  + 2.0 * C.xxx;
                //   x3 = x0 - 1.0 + 3.0 * C.xxx;
                float3 x1 = x0 - i1 + C.xxx;
                float3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y
                float3 x3 = x0 - D.yyy; // -1.0+3.0*C.x = -0.5 = -D.y

                // Permutations
                i = mod289(i);
                float4 p = permute(permute(permute(
                            i.z + float4(0.0, i1.z, i2.z, 1.0))
                        + i.y + float4(0.0, i1.y, i2.y, 1.0))
                    + i.x + float4(0.0, i1.x, i2.x, 1.0));

                // Gradients: 7x7 points over a square, mapped onto an octahedron.
                // The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294)
                float n_ = 0.142857142857; // 1.0/7.0
                float3 ns = n_ * D.wyz - D.xzx;

                float4 j = p - 49.0 * floor(p * ns.z * ns.z); //  mod(p,7*7)

                float4 x_ = floor(j * ns.z);
                float4 y_ = floor(j - 7.0 * x_); // mod(j,N)

                float4 x = x_ * ns.x + ns.yyyy;
                float4 y = y_ * ns.x + ns.yyyy;
                float4 h = 1.0 - abs(x) - abs(y);

                float4 b0 = float4(x.xy, y.xy);
                float4 b1 = float4(x.zw, y.zw);

                //float4 s0 = float4(lessThan(b0,0.0))*2.0 - 1.0;
                //float4 s1 = float4(lessThan(b1,0.0))*2.0 - 1.0;
                float4 s0 = floor(b0) * 2.0 + 1.0;
                float4 s1 = floor(b1) * 2.0 + 1.0;
                float4 sh = -step(h, 0);

                float4 a0 = b0.xzyw + s0.xzyw * sh.xxyy;
                float4 a1 = b1.xzyw + s1.xzyw * sh.zzww;

                float3 p0 = float3(a0.xy, h.x);
                float3 p1 = float3(a0.zw, h.y);
                float3 p2 = float3(a1.xy, h.z);
                float3 p3 = float3(a1.zw, h.w);

                //Normalise gradients
                float4 norm = taylorInvSqrt(float4(dot(p0, p0), dot(p1, p1), dot(p2, p2), dot(p3, p3)));
                p0 *= norm.x;
                p1 *= norm.y;
                p2 *= norm.z;
                p3 *= norm.w;

                // Mix final noise value
                float4 m = max(0.6 - float4(dot(x0, x0), dot(x1, x1), dot(x2, x2), dot(x3, x3)), 0.0);
                m = m * m;
                return 42.0 * dot(m * m, float4(dot(p0, x0), dot(p1, x1),
                 dot(p2, x2), dot(p3, x3)));
            }

            //END ASHIMA /

            const float STEPS = 4.;
            float CUTOFF = 0.15; //depth less than this, show black

            float3 hsv2rgb(float3 c)
            {
                float4 K = float4(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0);
                float3 p = abs(frac(c.xxx + K.xyz) * 6.0 - K.www);
                return c.z * lerp(K.xxx, clamp(p - K.xxx, 0.0, 1.0), c.y);
            }

            float getNoise(float2 uv, float t)
            {
                //given a uv coord and time - return a noise val in range 0 - 1
                //using ashima noise

                //add time to y position to make noise field move upwards

                float TRAVEL_SPEED = 1.5;

                //octave 1
                float SCALE = 2.0;
                float noise = snoise(float3(uv.x * SCALE, uv.y * SCALE - t * TRAVEL_SPEED, 0));

                //octave 2 - more detail
                SCALE = 6.0;
                noise += snoise(float3(uv.x * SCALE + t, uv.y * SCALE, 0)) * 0.2;

                //move noise into 0 - 1 range    
                noise = (noise / 2. + 0.5);

                return noise;
            }

            float getDepth(float n)
            {
                //given a 0-1 value return a depth,

                //remap remaining non-cutoff region to 0 - 1
                float d = (n - CUTOFF) / (1. - CUTOFF);

                //step it
                d = floor(d * STEPS) / STEPS;

                return d;
            }


            fixed4 frag(v2f_img i) : SV_Target
            {
                float2 uv = i.uv;
                uv.x *= 4.0;
                float t = _Time.y * 3.0;
                float3 col = 0;

                float noise = getNoise(uv, t);

                //shape cutoff to get higher further up the screen
                CUTOFF = uv.y;
                //and at horiz edges
                CUTOFF += pow(abs(uv.x * 0.5 - 1.), 1.0);

                //debugview cutoff field
                //fragColor = float4(float3(CUTOFF),1.0);   

                if (noise < CUTOFF)
                {
                    //black
                    col = 0;
                }
                else
                {
                    //fire
                    float d = pow(getDepth(noise), 0.7);
                    float3 hsv = float3(d * 0.17, 0.8 - d / 4., d + 0.8);
                    col = hsv2rgb(hsv);
                }
                
                return float4(col, 1.0);
            }
            ENDCG
        }
    }
}

Unity中实现ShaderToy卡通火(移植篇)_第2张图片


三、我们来调试一下Shader,看看问题出在了哪?

我们在调试Shader时,因为主要效果是在 片元着色器 中实现的。
所以,我们调试Shader一般 从 输出 倒着 来调试

1、return float4(col, 1.0);

在 ShaderToy中,已经规定了透明值为 1 。所以,最终效果为黑色,不是透明值导致的。我们应该顺着 col 去找bug。

2、black or fire

if (noise < CUTOFF)
{
	//black
	col = 0;
}
else
{
	//fire
	float d = pow(getDepth(noise), 0.7);
	float3 hsv = float3(d * 0.17, 0.8 - d / 4., d + 0.8);
	col = hsv2rgb(hsv);
}
  • 我们修改black中的col。发现黑色的背景变白了,说明这不是使col最终全为 0 的原因
    col = 1;
    Unity中实现ShaderToy卡通火(移植篇)_第3张图片

  • 我们修改 fire 中的 col 分别为 hsv 、d 和 getDepth(noise); (没有变化,说明这也不是原因所在)
    col = hsv; / col = d; / col = getDepth(noise);
    Unity中实现ShaderToy卡通火(移植篇)_第4张图片

  • 我们修改 fire 中的 col 为 noise 后,我们的火出现了变化(可以锁定getDepth函数出现了问题)
    col = noise;
    Unity中实现ShaderToy卡通火(移植篇)_第5张图片

3、getDepth函数

float getDepth(float n)
{
	//given a 0-1 value return a depth,
	
	//remap remaining non-cutoff region to 0 - 1
	float d = (n - CUTOFF) / (1. - CUTOFF);
	
	//step it
	d = floor(d * STEPS) / STEPS;
	
	return d;
}
  • 在归一化(remap remaining non-cutoff region to 0 - 1)之后,返回一个d。(我们可以看出火有了大致的颜色,说明问题处在了d = floor(d * STEPS) / STEPS;这句话)
    Unity中实现ShaderToy卡通火(移植篇)_第6张图片
  • 而 d 我们已经返回过了。所以,最终问题在 STEPS 参数上
    Unity中实现ShaderToy卡通火(移植篇)_第7张图片

四、修改 STEPS 的数值出错问题

在Unity的Shader中,如果我们的常量直接定义在Pass中
不管初始值为多少,Unity都会默认为0。
如果我们想这样使用参数,必须在属性块定义一个变量给定初始值

法1:在属性面板增加 STEPS 参数,赋予初始值4

  • 在这样定义后,修改对应的变量名后即可使用
	Properties
    {
        _Steps("STEPS",float) = 4
    }

法2:使用#define 预定义一个常量

#define STEPS 4

  • 可以看出,我们效果正确了

五、最终代码

//https://www.shadertoy.com/view/lsscWr

Shader "MyShader/P2_9"
{
    Properties
    {
        _Steps("STEPS",float) = 4
        _CUTOFF("CUTOFF",float) = 0.15
    }
    SubShader
    {
        // No culling or depth
        Cull Off ZWrite Off ZTest Always

        Pass
        {
            CGPROGRAM
            #pragma vertex vert_img
            #pragma fragment frag
            #include "UnityCG.cginc"

            float3 mod289(float3 x)
            {
                return x - floor(x * (1.0 / 289.0)) * 289.0;
            }

            float4 mod289(float4 x)
            {
                return x - floor(x * (1.0 / 289.0)) * 289.0;
            }

            float4 permute(float4 x)
            {
                return mod289(((x * 34.0) + 1.0) * x);
            }

            float4 taylorInvSqrt(float4 r)
            {
                return 1.79284291400159 - 0.85373472095314 * r;
            }

            float snoise(float3 v)
            {
                const float2 C = float2(1.0 / 6.0, 1.0 / 3.0);
                const float4 D = float4(0.0, 0.5, 1.0, 2.0);

                // First corner
                float3 i = floor(v + dot(v, C.yyy));
                float3 x0 = v - i + dot(i, C.xxx);

                // Other corners
                float3 g = step(x0.yzx, x0.xyz);
                float3 l = 1.0 - g;
                float3 i1 = min(g.xyz, l.zxy);
                float3 i2 = max(g.xyz, l.zxy);

                //   x0 = x0 - 0.0 + 0.0 * C.xxx;
                //   x1 = x0 - i1  + 1.0 * C.xxx;
                //   x2 = x0 - i2  + 2.0 * C.xxx;
                //   x3 = x0 - 1.0 + 3.0 * C.xxx;
                float3 x1 = x0 - i1 + C.xxx;
                float3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y
                float3 x3 = x0 - D.yyy; // -1.0+3.0*C.x = -0.5 = -D.y

                // Permutations
                i = mod289(i);
                float4 p = permute(permute(permute(
                            i.z + float4(0.0, i1.z, i2.z, 1.0))
                        + i.y + float4(0.0, i1.y, i2.y, 1.0))
                    + i.x + float4(0.0, i1.x, i2.x, 1.0));

                // Gradients: 7x7 points over a square, mapped onto an octahedron.
                // The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294)
                float n_ = 0.142857142857; // 1.0/7.0
                float3 ns = n_ * D.wyz - D.xzx;

                float4 j = p - 49.0 * floor(p * ns.z * ns.z); //  mod(p,7*7)

                float4 x_ = floor(j * ns.z);
                float4 y_ = floor(j - 7.0 * x_); // mod(j,N)

                float4 x = x_ * ns.x + ns.yyyy;
                float4 y = y_ * ns.x + ns.yyyy;
                float4 h = 1.0 - abs(x) - abs(y);

                float4 b0 = float4(x.xy, y.xy);
                float4 b1 = float4(x.zw, y.zw);

                //float4 s0 = float4(lessThan(b0,0.0))*2.0 - 1.0;
                //float4 s1 = float4(lessThan(b1,0.0))*2.0 - 1.0;
                float4 s0 = floor(b0) * 2.0 + 1.0;
                float4 s1 = floor(b1) * 2.0 + 1.0;
                float4 sh = -step(h, 0);

                float4 a0 = b0.xzyw + s0.xzyw * sh.xxyy;
                float4 a1 = b1.xzyw + s1.xzyw * sh.zzww;

                float3 p0 = float3(a0.xy, h.x);
                float3 p1 = float3(a0.zw, h.y);
                float3 p2 = float3(a1.xy, h.z);
                float3 p3 = float3(a1.zw, h.w);

                //Normalise gradients
                float4 norm = taylorInvSqrt(float4(dot(p0, p0), dot(p1, p1), dot(p2, p2), dot(p3, p3)));
                p0 *= norm.x;
                p1 *= norm.y;
                p2 *= norm.z;
                p3 *= norm.w;

                // Mix final noise value
                float4 m = max(0.6 - float4(dot(x0, x0), dot(x1, x1), dot(x2, x2), dot(x3, x3)), 0.0);
                m = m * m;
                return 42.0 * dot(m * m, float4(dot(p0, x0), dot(p1, x1),
                 dot(p2, x2), dot(p3, x3)));
            }

            //END ASHIMA /

            float _Steps;
            float _CUTOFF; //depth less than this, show black

            float3 hsv2rgb(float3 c)
            {
                float4 K = float4(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0);
                float3 p = abs(frac(c.xxx + K.xyz) * 6.0 - K.www);
                return c.z * lerp(K.xxx, clamp(p - K.xxx, 0.0, 1.0), c.y);
            }

            float getNoise(float2 uv, float t)
            {
                //given a uv coord and time - return a noise val in range 0 - 1
                //using ashima noise

                //add time to y position to make noise field move upwards

                float TRAVEL_SPEED = 1.5;

                //octave 1
                float SCALE = 2.0;
                float noise = snoise(float3(uv.x * SCALE, uv.y * SCALE - t * TRAVEL_SPEED, 0));

                //octave 2 - more detail
                SCALE = 6.0;
                noise += snoise(float3(uv.x * SCALE + t, uv.y * SCALE, 0)) * 0.2;

                //move noise into 0 - 1 range    
                noise = (noise / 2. + 0.5);

                return noise;
            }

            float getDepth(float n)
            {
                //given a 0-1 value return a depth,

                //remap remaining non-_CUTOFF region to 0 - 1
                float d = (n - _CUTOFF) / (1. - _CUTOFF);
                //step it
                d = floor(d * _Steps) / _Steps;

                return d;
            }


            fixed4 frag(v2f_img i) : SV_Target
            {
                float2 uv = i.uv;
                uv.x *= 4.0;
                float t = _Time.y * 3.0;
                float3 col = 0;

                float noise = getNoise(uv, t);

                //shape _CUTOFF to get higher further up the screen
                _CUTOFF = uv.y;
                //and at horiz edges
                _CUTOFF += pow(abs(uv.x * 0.5 - 1.), 1.0);

                //debugview _CUTOFF field
                //fragColor = float4(float3(_CUTOFF),1.0);   

                if (noise < _CUTOFF)
                {
                    //black
                    col = 0;
                }
                else
                {
                    //fire
                    float d = pow(getDepth(noise), 0.7);
                    float3 hsv = float3(d * 0.17, 0.8 - d / 4., d + 0.8);
                    col = hsv2rgb(hsv);
                }
                
                return float4(col, 1.0);
            }
            ENDCG
        }
    }
}

你可能感兴趣的:(Unity,unity,游戏引擎)