转载于:2022了你还不会『低代码』?数据科学也能玩转Low-Code啦! - 掘金 (juejin.cn)
低代码开发,顾名思义,指的是软件开发过程中只需要编写少量代码就够了。与传统开发方式相比,低代码大幅减少了编写代码的工作量,这使其具备了更快的速度、更短的开发时间与更低的成本。
无代码 / 低代码机器学习平台(和库)的兴起,加速了代码开发速度。借助于这些平台和框架,数据科学家们在繁重的探索研究和大量的编程任务之间,取得更好的平衡。
在本篇内容中,ShowMeAI 给大家总结了最值得学习&使用 Python 低代码机器学习库,覆盖数据科学最热门的几大方向——数据分析&简单挖掘、机器学习、深度学习。
D-Tale 是一个易于使用的低代码 Python 库,通过将 Flask 编写的后端与 React 编写的前端相结合,与 Jupyter Notebook 无缝集成,可以查看和分析 Pandas 形态的数据,包括 DataFrame、Series、MultiIndex、DatetimeIndex 和 RangeIndex。
D-Tale 是 SAS 到 Python 转换的产物,最初是基于 SAS 的 perl 脚本包装器,现在是基于 Pandas 数据结构的轻量级 Web 客户端。
大家可以在D-Tale的官方 Github 查看它的详细教程和用法,也可以前往 在线平台 操作体验。
对于低代码探索式数据分析任务,AutoViz 是 Python 中另一个不错的选择。在功能方面,它只需编写一行代码即可使用 AutoViz 完成任何数据集的自动可视化。
AutoViz 能够结合任务确定哪些特征是最重要的,然后通过仅使用那些自动选择的元素来绘制和呈现信息。而且AutoViz速度极快,可视化可以在几秒钟内完成。
大家可以查看官方 AutoViz 示例 Jupyter Notebook 进行学习。
Lux 工具库是一个非常自动的数据分析可视化工具。无需做太多的数据预处理,它会自动根据数据生成一系列候选图表,根据实际需要从中做选择即可。这大大减少了制作图表所需的时间以及数据预处理工作量。
大家可以通过 Lux 的官方 GitHub 页面了解更多用法细节。
pandas-profiling 库自动针对 pandas DataFrame 格式的数据生成数据分析报告。
最终的结果以交互式 HTML 报告呈现,包含以下信息:
大家可以在 pandas-profiling 的项目 GitHub 页面获取详细使用方法。
PyCaret 是 Python 中的一个开源、低代码机器学习库,可自动执行机器学习工作流。它也是一个端到端的机器学习和模型管理工具,可以成倍地加快实验周期,提升工作开发效率。
与其他开源机器学习库相比,PyCaret 有着明显的低代码特质,可仅用几行代码完成原本需要数百行代码完成的工作,尤其是对于密集的实验迭代过程可以大大提速。PyCaret 本质上是围绕多个机器学习库和框架封装而成,包括大家熟悉的 Scikit-Learn、XGBoost、LightGBM、CatBoost、spaCy、Optuna、Hyperopt 和 Ray 等。
大家可以通过 Pycaret 的 官方文档,官方GitHub,官方教程 了解更多使用细节。
PyTorch Lightning 是一个应用在深度学习/神经网络的 Python 低代码库,为 PyTorch 提供高级接口。
它具备高性能和轻量级的架构,以一种将研究与工程分离的方式来构建 PyTorch 代码,使深度学习实验更容易理解和重复。借助它能轻松构建分布式硬件上的可扩展深度学习模型。
官网介绍说,PyTorch Lightning 的设计是为了让大家可以将更多的时间花在研究上,而不是花在工程上。大家可以通过 PyTorch Lightning 的 官方网站 了解更多使用细节。
Hugging Face Transformers 是 Hugging Face 的开源深度学习工具库。借助 Transformers,大家可以非常方便快速地下载最先进的预训练模型,应用在自己的场景中,或者基于自己的数据做再训练。
因为官方提供的大量预训练模型,我们可以减少计算费用(因为无需从头训练)。丰富的模型覆盖多种数据类型和业务源,包括:
PyTorch、TensorFlow 和 JAX 是三个最著名的深度学习库,transformers 的对这三个框架都支持得很好,甚至可以在一个框架中用三行代码训练模型,在另一个框架中加载模型并进行推理。
大家可以通过 Hugging Face Transformers 的 官方网站 和 GitHub 了解更多使用细节。