- 在Mac M1/M2芯片上完美安装DeepCTR库:避坑指南与实战验证
ku_code_ku
机器学习macos推荐算法推荐系统
让推荐算法在AppleSilicon上全速运行概述作为推荐系统领域的最经常用的明星库,DeepCTR集成了CTR预估、多任务学习等前沿模型实现。但在AppleSilicon架构的Mac设备上,安装过程常因ARM架构适配、依赖库版本冲突等问题受阻。本文通过20+次环境搭建实测,总结出最稳定的安装方案。关键版本说明(2024年验证)组件推荐版本注意事项Python3.10.x向下兼容至3.7,但3.1
- 字节跳动算法高频题:动态规划最优模板
知识产权13937636601
计算机算法动态规划
本文系统梳理字节跳动近三年算法面试中的动态规划(DP)高频题型,提炼出适用于80%场景的通用解题模板。通过背包问题、字符串处理、状态压缩等六大核心模块解析,结合跳槽、股票交易、编辑距离等15道真题案例,揭示动态规划的状态转移方程构建规律与维度优化技巧,助您在面试中实现时间复杂度与空间复杂度的双重最优解。第一章动态规划基础框架1.1动态规划三大特征特征判定标准真题案例重叠子问题递归树中存在重复计算节
- macOS 使用 enca 识别 文件编码类型(比 file 命令准确)
知识搬运bot
软件工具/使用技巧macosencafileiconv文件编码
文章目录macOS上安装enca基本使用起因-iconv关于enca安装Encaenca&enconv其它用法macOS上安装encabrewinstallenca基本使用encafilepath.txt示例$enca动态规划算法.txt[0]SimplifiedChineseNationalStandard;GB2312CRLFlineterminators起因-iconv在macOS上打开一些
- 火语言 RPA 的独特优势:为何它能脱颖而出?
IDFaucet
rpa
(一)低门槛上手:技术小白的福音与其他一些需要深厚编程基础才能操作的自动化工具不同,火语言RPA的语法设计极其亲民。它采用类似于自然语言的表达方式,通过简单的指令组合,就能实现复杂的自动化流程。例如,“打开Excel文件‘销售数据.xlsx’,选中A1到C10单元格区域,计算平均值并将结果填入D1单元格”,这样一段简单的描述,通过火语言稍加整理就能转化为可执行的自动化脚本。这意味着,即使你从未接触
- 利用AI与MySQL提升工业物联网健康监测的智慧水平——构建预测性维护的新纪元
墨夶
数据库学习资料1人工智能mysql物联网
在工业4.0和智能制造的大背景下,如何确保生产设备的高效稳定运行成为企业竞争力的核心要素之一。传统的事后维修方式已经难以满足现代制造业的需求,而基于人工智能(AI)的预测性维护系统则为这一挑战提供了全新的解决方案。今天,我们将深入探讨如何结合AI技术和MySQL数据库,打造一个智能、高效的工业物联网(IIoT)健康监测平台,助力企业在激烈的市场竞争中脱颖而出。一、为什么选择AI+MySQL?1.A
- OpenCV图像拼接(4)图像拼接模块的一个匹配器类cv::detail::BestOf2NearestRangeMatcher
村北头的码农
OpenCVopencv人工智能计算机视觉
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述cv::detail::BestOf2NearestRangeMatcher是OpenCV库中用于图像拼接模块的一个匹配器类,专门用于寻找两幅图像之间的最佳特征点匹配。它是基于“最近邻与次近邻距离比”原则来过滤匹配点对的,以提高匹配结果的准确性。这个类特别适用于需
- 股票市场的量化交易策略如何应对市场情绪变化?
云策量化
程序化炒股量化软件量化交易量化炒股QMT股票交易PTrade量化交易股票投资deepseek
推荐阅读:《程序化炒股:如何申请官方交易接口权限?个人账户可以申请吗?》股票市场的量化交易策略如何应对市场情绪变化?在股票市场中,量化交易策略是一种基于数学模型和算法的交易方式,它通过分析历史数据来预测未来价格走势,并据此制定交易决策。然而,市场情绪的变化对股票价格有着不可忽视的影响。本文将探讨量化交易策略如何应对市场情绪的变化,并提供一些具体的代码示例。一、市场情绪的重要性市场情绪是指投资者对市
- 算法笔记——前缀树、贪心算法(更新ing.......
不吃香菜的码农
左神算法笔记算法数据结构贪心算法leetcode堆栈
前缀树、贪心算法一、前缀树1.什么是前缀树2.如何生成前缀树二、贪心算法1.拼接字符串2.金条问题3.项目会议时间问题4.项目收益最大化4.随时获得数据流的中位数一、前缀树1.什么是前缀树前缀树一般指字典树这是指一种结构而不是一类题(注意信息是在树的路上)典型应用是用于统计和排序大量的字符串(但不仅限于字符串),所以经常被搜索引擎系统用于文本词频统计。它的优点是:最大限度地减少无谓的字符串比较,查
- Open3D 点云DBSCAN聚类算法
MelaCandy
算法聚类numpy计算机视觉图像处理3d
目录一、DBSCAN基本原理二、代码实现2.1关键函数2.2完整代码三、实现效果3.1原始点云3.2聚类后点云Open3D点云算法汇总及实战案例汇总的目录地址:Open3D点云算法与点云深度学习案例汇总(长期更新)-CSDN博客一、DBSCAN基本原理DBSCAN(Density-BasedSpatialClusteringofApplicationswithNoise)是一种基于密度的聚类算法,
- python 列表倒序输出
小琳爱分享
pythonpython
python列表倒序输出#使用reverseli1=[1,6,4,3,7,9]li2=['a','m','s','g']li1.reverse()li2.reverse()print(li1,li2)#利用list切片li1=[1,6,4,3,7,9]li2=['a','m','s','g']print(li1[::-1])print(li2[::-1])#利用算法进行转换,这里需要用到深层cop
- 基于WebAssembly的浏览器密码套件
闲人编程
wasm服务器易于集成跨平台性密码套件浏览器WebAssembly
目录一、前言二、WebAssembly与浏览器密码套件2.1WebAssembly技术概述2.2浏览器密码套件的需求三、系统设计思路与架构3.1核心模块3.2系统整体架构图四、核心数学公式与算法证明4.1AES-GCM加解密公式4.2SHA-256哈希函数五、异步任务调度与GPU加速设计5.1异步任务调度5.2GPU加速六、GUI设计与功能模块七、完整代码实现九、代码自查与总结十、总结与展望一、前
- 密码学,算法在人工智能的实战利用
china—hbaby
人工智能密码学
在人工智能(AI)的快速发展中,数据安全和隐私保护成为了核心议题。密码学,作为保护信息安全的基石,其在AI领域的应用显得尤为重要。本文将探讨密码学在AI中的利用,并提供一些代码示例来展示其实际应用。密码学的概述即常用加密方式密码学(Cryptography)是数学和计算机科学的一个分支,它涉及保护信息的安全性和隐私性。密码学的主要目标是确保信息在传输过程中不被未授权的第三方读取或篡改,以及确保信息
- 力扣算法ing(35 / 100)
菥菥爱嘻嘻
小白学习算法算法leetcodetypescriptjavascript
3.22104.二叉树的最大深度我的思路:dfs,深度优先搜索或者说能不能先根搜索,根层数3192nullmax=2202153nullmax=373nullmax=3我的代码:if(head.next===null)maxreturnfunctionmaxDepth(root:TreeNode|null):number{functionfindMax(root:TreeNode|null,dep
- 力扣算法ing(30 / 100)
菥菥爱嘻嘻
小白学习算法算法leetcodetypescriptjavascript
3.1719.删除链表的倒数第n个结点给你一个链表,删除链表的倒数第n个结点,并且返回链表的头结点。示例1:输入:head=[1,2,3,4,5],n=2输出:[1,2,3,5]示例2:输入:head=[1],n=1输出:[]示例3:输入:head=[1,2],n=1输出:[1]删除指定的节点,给出头节点逆转链表,寻找第n个,删除不行不行,逆转录又要反转回去后面我想到了一个解决办法:利用数组计算总
- 力扣算法ing(9/100)
菥菥爱嘻嘻
小白学习算法算法leetcode数据库typescript
2.26438.找到字符串中所有字母的异位词438.找到字符串中所有字母异位词给定两个字符串s和p,找到s中所有p的异位词的子串,返回这些子串的起始索引。不考虑答案输出的顺序。示例1:输入:s="cbaebabacd",p="abc"输出:[0,6]解释:起始索引等于0的子串是"cba",它是"abc"的异位词。起始索引等于6的子串是"bac",它是"abc"的异位词。示例2:输入:s="abab
- 【C/C++】在排序数组中查找元素的第一个和最后一个位置(leetcode T34)
勇士小蓝0727
c语言c++leetcode开发语言算法数据结构蓝桥杯
核心考点:法一双指针法;法二二分查找法题目描述:给你一个按照非递减顺序排列的整数数组nums,和一个目标值target。请你找出给定目标值在数组中的开始位置和结束位置。如果数组中不存在目标值target,返回[-1,-1]。你必须设计并实现时间复杂度为O(logn)的算法解决此问题。(示例见文末)答案详解:方法一:双指针法vectorsearchRange(vector&nums,inttarge
- 【人工智能时代】-人工智能发展史:1900~2023
xiaoli8748_软件开发
人工智能时代人工智能搜索引擎
第一阶段:人工智能发展历史:1900-19591909年西班牙工程师LeonardoTorresyQuevedo发明了“Occultus”,这是一个可以自动执行国际象棋对弈的机器,预示了未来的计算智能。
- 每日算法题-Nim 游戏 - 台阶
晚夜微雨问海棠呀
算法游戏
给定一个台阶数n,玩家每次可以选择跳跃1到m个台阶,最后一个台阶到达者获胜。假设两位玩家都采取最优策略,判断先手玩家是否会获胜。输入格式一行包含两个整数n和m(1≤n,m≤10^9)。输出格式如果先手玩家能获胜,输出"Yes";否则输出"No"。n,m=map(int,input().split())ifnm时,若n%(m+1)≠0,先手可以通过策略使剩余台阶数变为(m+1)的倍数,将必败态转移给
- 算法每日一练 (17)
张胤尘
算法每日一练算法数据结构
欢迎来到张胤尘的技术站技术如江河,汇聚众志成。代码似星辰,照亮行征程。开源精神长,传承永不忘。携手共前行,未来更辉煌文章目录算法每日一练(17)打家劫舍题目描述解题思路解题代码`c/c++``golang``lua`官方站点:力扣Leetcode算法每日一练(17)打家劫舍题目地址:打家劫舍题目描述你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的
- 算法每日一练 (16)
张胤尘
算法每日一练算法数据结构
欢迎来到张胤尘的技术站技术如江河,汇聚众志成。代码似星辰,照亮行征程。开源精神长,传承永不忘。携手共前行,未来更辉煌文章目录算法每日一练(16)使用最小花费爬楼梯题目描述解题思路解题代码`c/c++``golang``lua`官方站点:力扣Leetcode算法每日一练(16)使用最小花费爬楼梯题目地址:使用最小花费爬楼梯题目描述给你一个整数数组cost,其中cost[i]是从楼梯第i个台阶向上爬需
- 目标检测领域总结:从传统方法到 Transformer 时代的革新
DoYangTan
目标检测系列目标检测transformer人工智能
目标检测领域总结:从传统方法到Transformer时代的革新目标检测是计算机视觉领域的一个核心任务,它的目标是从输入图像中识别并定位出目标物体。随着深度学习的兴起,目标检测方法已经取得了显著的进展。从最早的传统方法到现如今基于Transformer的先进算法,目标检测的发展经历了多个重要的阶段。本文将详细总结目标检测领域的演进,涵盖传统方法、两阶段检测方法、单阶段检测方法和基于Transform
- 2024MathorCup数学建模之——MathorCup奖杯”获得者经验思路分享
美赛数学建模
数学建模
一、经验分享1.工具选择:顺手即可。Matlab和Python都是比较主流的选择,二者的应用场合各有不同。Python在数据分析、深度学习方面的优势愈发明显,而Matlab更适合进行物理仿真和数值计算。不过随着Python社区不断发展,其功能也愈发全面与强大,因此我们比较推荐学有余力的情况下可以更早接触Python。2.模型算法:多多益善。不一定要精通所有的算法,但是手上至少要准备一些常用的算法(
- AI人工智能软件开发方案:开启智能时代的创新钥匙
广州硅基技术官方
人工智能
一、引言:AI浪潮下的软件开发新机遇近年来,人工智能(AI)技术的迅猛发展如同一股汹涌澎湃的浪潮,席卷了全球各个领域。从最初的概念提出到如今的广泛应用,AI历经了漫长的发展历程,终于迎来了属于它的黄金时代。回首过去,AI的发展并非一帆风顺,早期由于计算能力和算法的限制,经历了多次起伏。但随着大数据、云计算、机器学习、深度学习等技术的不断突破,AI迎来了爆发式增长。如今,AI已经深入到人们生活和工作
- 深度学习框架PyTorch——从入门到精通(6.2)自动微分机制
Fansv587
深度学习pytorch人工智能经验分享python机器学习
本节自动微分机制是上一节自动微分的扩展内容自动微分是如何记录运算历史的保存张量非可微函数的梯度在本地设置禁用梯度计算设置requires_grad梯度模式(GradModes)默认模式(梯度模式)无梯度模式推理模式评估模式(`nn.Module.eval()`)自动求导中的原地操作原地操作的正确性检查多线程自动求导CPU上的并发不确定性计算图保留自动求导节点的线程安全性C++钩子函数不存在线程安全
- 燃爆!程序员如何借助 AI 大模型冲破编程效率枷锁?(以DeepSeek,ChatGPT为例)
羑悻的小杀马特.
AI学习chatgptdeepseekAI大模型开发语言
AI大模型已成为程序员提升效率的有力助手。本文聚焦DeepSeek和ChatGPT,探讨程序员如何借其冲破编程效率枷锁。在代码编写阶段,它们能快速生成基础框架、实现特定功能及复杂算法代码;调试时,精准分析错误并给出优化建议;文档生成方面,为函数、类及项目文档助力。程序员需掌握高效交互技巧,结合自身经验,合理利用AI大模型,全面提升编程效率,开启高效编程新境界。目录一·本篇背景:二、AI大模型简介2
- Pytorch深度学习教程_9_nn模块构建神经网络
tRNA做科研
深度学习保姆教程深度学习pytorch神经网络
欢迎来到《深度学习保姆教程》系列的第九篇!在前面的几篇中,我们已经介绍了Python、numpy及pytorch的基本使用,进行了梯度及神经网络的实践并学习了激活函数和激活函数,在上一个教程中我们学习了优化算法。今天,我们将开始使用pytorch构建我们自己的神经网络。欢迎订阅专栏进行系统学习:深度学习保姆教程_tRNA做科研的博客-CSDN博客目录1.理解nn模块:(1)使用nn.Sequent
- 【机器学习】算法分类
CH3_CH2_CHO
什么?!是机器学习!!机器学习算法有监督学习无监督学习半监督学习强化学习
1、有监督学习1.1定义使用带标签的数据训练模型。有监督学习是机器学习中最常见的一种类型,它利用已知的输入特征和对应的输出标签来训练模型,使模型能够学习到特征与标签之间的映射关系。在训练过程中,模型会不断地调整自身的参数,以最小化预测值与真实标签之间的误差,从而提高预测的准确性。1.2回归问题1.2.1目标预测连续值。回归问题的目标是预测一个连续的数值结果,模型的输出是一个实数值。1.2.2解释回
- Radiance Fields from VGGSfM和Mast3r:两种先进3D重建方法的比较与分析
2401_87458718
3d
VGGSfM和Mast3r:3D场景重建的新方向在计算机视觉和3D重建领域,如何从2D图像重建3D场景一直是一个充满挑战的研究课题。近年来,随着深度学习技术的发展,一些新的方法被提出并取得了显著的进展。本文将重点介绍两种最新的基于深度学习的3D重建方法:VGGSfM和Mast3r,并通过GaussianSplatting技术对它们的性能进行全面比较和分析。VGGSfM:基于视觉几何的深度结构运动恢
- 基于 PyTorch 的 MNIST 手写数字分类模型
欣然~
pytorch分类人工智能
一、概述本代码使用PyTorch框架构建了一个简单的神经网络模型,用于解决MNIST手写数字分类任务。代码主要包括数据的加载与预处理、神经网络模型的构建、损失函数和优化器的定义、模型的训练、评估以及最终模型的保存等步骤。二、依赖库torch:PyTorch深度学习框架的核心库,提供了张量操作、自动求导等功能。torch.nn:PyTorch的神经网络模块,包含了各种神经网络层、损失函数等。torc
- 数据结构——链表专项
seven——seven
linuxmailbox之线程邮箱数据结构链表算法
数据结构的总结1.定义一组用来保存一种或者多种特定关系的数据的集合(组织和存储数据)程序的设计:将现实中大量而复杂的问题以特定的数据类型和特定的存储结构存储在内存中,并在此基础上实现某个特定的功能的操作;程序=数据结构+算法高内聚,低耦合2.数据与数据之间的关系数据的逻辑结构:数据元素与元素之间的关系集合:关系平等线性结构:元素之间一对一的关系(表,队列。栈。。。)树型结构:元素之间一对多的关系(
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =