用paddlepaddle来重写之前那个手写的梯度下降方案,简化内容
实际上就做了几个事:
paddle库替你做了前向计算和损失函数计算,以及反向传播相关的计算函数
这部分代码和之前一样,读取数据是独立的
点击查看代码#数据划分函数不依赖库,还是自己读
def load_data():
# 从文件导入数据
datafile = './work/housing.data'
data = np.fromfile(datafile, sep=' ', dtype=np.float32)
# 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格中位数
feature_names = [ 'CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', \
'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV' ]
feature_num = len(feature_names)
# 将原始数据进行Reshape,变成[N, 14]这样的形状
data = data.reshape([data.shape[0] // feature_num, feature_num])
# 将原数据集拆分成训练集和测试集
# 这里使用80%的数据做训练,20%的数据做测试
# 测试集和训练集必须是没有交集的
ratio = 0.8
offset = int(data.shape[0] * ratio)
training_data = data[:offset]
# 计算train数据集的最大值,最小值
maximums, minimums = training_data.max(axis=0), training_data.min(axis=0)
# 记录数据的归一化参数,在预测时对数据做归一化
global max_values
global min_values
max_values = maximums
min_values = minimums
# 对数据进行归一化处理
for i in range(feature_num):
data[:, i] = (data[:, i] - min_values[i]) / (maximums[i] - minimums[i])
# 训练集和测试集的划分比例
training_data = data[:offset]
test_data = data[offset:]
return training_data, test_data
class Regressor(paddle.nn.Layer):
#self代表对象自身
def __init__(self):
#初始化父类的参数
super(Regressor, self).__init__()
#定义一层全连接层,输入维度是13,输出维度是1
self.fc = Linear(in_features=13, out_features=1)
#网络的前向计算函数
def forward(self, inputs):
x = self.fc(inputs)
return x
在上面这个类中,不论是前向计算还是初始化,都是继承了这个paddle.nn.Layer类,用其内部的成员函数执行的
我们定义一个循环来执行这个流程,如下:
点击查看代码EPOCH_NUM = 10 # 设置外层循环次数
BATCH_SIZE = 10 # 设置batch大小
# 定义外层循环
for epoch_id in range(EPOCH_NUM):
# 在每轮迭代开始之前,将训练数据的顺序随机的打乱
np.random.shuffle(training_data)
# 将训练数据进行拆分,每个batch包含10条数据
mini_batches = [training_data[k:k+BATCH_SIZE] for k in range(0, len(training_data), BATCH_SIZE)]
# 定义内层循环
for iter_id, mini_batch in enumerate(mini_batches):
x = np.array(mini_batch[:, :-1]) # 获得当前批次训练数据
y = np.array(mini_batch[:, -1:]) # 获得当前批次训练标签(真实房价)
# 将numpy数据转为飞桨动态图tensor的格式
house_features = paddle.to_tensor(x)
prices = paddle.to_tensor(y)
# 前向计算
predicts = model(house_features)
# 计算损失
loss = F.square_error_cost(predicts, label=prices)
avg_loss = paddle.mean(loss)
if iter_id%20==0:
print("epoch: {}".format(epoch_id))
print("iter: {}".format(str(iter_id)))
print("loss is : {}".format(float(avg_loss)))
# 反向传播,计算每层参数的梯度值
avg_loss.backward()
# 更新参数,根据设置好的学习率迭代一步
opt.step()
# 清空梯度变量,以备下一轮计算
opt.clear_grad()
在梯度下降得到一个模型了之后,可以把这个神经网络模型保存下来
点击查看代码paddle.save(model.state_dict(), 'LR_model.pdparams')
print("模型保存成功,模型参数保存在LR_model.pdparams中")
在启动模型之前,当然可以读取这样一个模型:
点击查看代码def load_one_example():
# 从上边已加载的测试集中,随机选择一条作为测试数据
idx = np.random.randint(0, test_data.shape[0])
idx = -10
one_data, label = test_data[idx, :-1], test_data[idx, -1]
# 修改该条数据shape为[1,13]
one_data = one_data.reshape([1,-1])
return one_data, label
# 参数为保存模型参数的文件地址
#读取保存模型
model_dict = paddle.load('LR_model.pdparams')
model.load_dict(model_dict) #读取模型文件
model.eval() #转变为预测模式
# 参数为数据集的文件地址
one_data, label = load_one_example()
# 将数据转为动态图的variable格式
one_data = paddle.to_tensor(one_data)
#model是定义的模型,这个model(one_data)实际上是对one_Data进行了一次前向传播
predict = model(one_data)
# 因为这个predict的值实际上是做了归一化处理的,所以这里需要进行反归一化处理
predict = predict * (max_values[-1] - min_values[-1]) + min_values[-1]
# 对label数据做反归一化处理
label = label * (max_values[-1] - min_values[-1]) + min_values[-1]
#模型预测值是22.72234,,实际值是19.700000762939453
print("Inference result is {}, the corresponding label is {}".format(predict.numpy(), label))