文章构建了一个新的benchmark用于评估神经网络等算法的可解释性。benchmark包括三种NLP任务:情感分析、文本相似度评估和阅读理解。和现有的一些benchmark相比,文章给出的benchmark覆盖了中、英文,且属于token水平的解释性评估,此外,该benchmark满足度量可解释性的benchmark的所有基本性质,即充分的、紧致的、全面的。
文章考虑了中、英文的三种代表性的NLP任务:情感分析、文本相似度评估和阅读理解。
为了评估模型的faithfulness(根因在多大程度上影响输出结果),文章希望度量相同的模型决策机制下,外界扰动对根因是否有影响。一个好的根因应该满足“当扰动发生时,根因和预测输出的变化是一致的(输出不变,则根因也不变)。
文章从两个角度构建扰动:1) 扰动不影响根因和预测结果 2)扰动造成了根因的改变且可能会影响预测结果。基于这两个角度,文章定义了三种类型的扰动:
标记员会原始输入中对输入影响较大的tokens为根因(rationales)。一些研究认为,好的rationale应该满足以下三点
为了构建更合理地对模型表现进行度量,文章采用token-F1来度量可信度(plausibility),MAP来度量忠实度(faithfulness)
如下式定义,token F1-score用于计算token之间重叠的比例,用于评估可信度(模型给出根因和真实根因的对齐程度) T o k e n − F 1 = 1 N ∑ i = 1 N ( 2 × P i × R i P i + R i ) , w h e r e P i = ∣ S i p ∩ S i g ∣ ∣ S i p ∣ , a n d R i = ∣ S i p ∩ S i g ∣ ∣ S i g ∣ Token-F1 = \frac 1N \sum_{i=1}^N \left(2 \times \frac {P_i \times R_i}{P_i +R_i}\right), \\ where\ P_i = \frac {|S_i^p \cap S_i^g|}{|S_i^p|}, \ and \ R_i = \frac {|S_i^p \cap S_i^g|}{|S_i^g|} Token−F1=N1i=1∑N(2×Pi+RiPi×Ri),where Pi=∣Sip∣∣Sip∩Sig∣, and Ri=∣Sig∣∣Sip∩Sig∣, 其中 S i p , S i g S_i^p, S_i^g Sip,Sig分别表示第i个样本的预测根因集合和人类标注的根因集合。
如下式定义,MAP用于度量扰动后的根因一致性,被用于表示faithfulness M A P = ∑ i = 1 ∣ X p ∣ ( ∑ j = 1 i G ( x j p , x 1 : i o ) ) / i ) ∣ X p ∣ MAP=\frac {\sum_{i=1}^{|X^p|}\left(\sum_{j=1}^i G(x_j^p, x_{1:i}^o))/i \right)}{|X^p|} MAP=∣Xp∣∑i=1∣Xp∣(∑j=1iG(xjp,x1:io))/i),其中 X o , X p X^o, X^p Xo,Xp分别表示原始和扰动后的输入的排列后的根因(按照重要性排列),可以理解为扰动后的输出的第 i i i重要的根因出现在原始输入前 j j j重要的根因的概率均值。
文章给出了一个中、英文双语的情感分类、文本相似度和阅读理解benchmark,相比于现存的benchmark,该benchmark满足充分性、紧致性和全面性。此外,为了更准确的评估模型可解释性,文章提出通过Token F1-score, MAP进行更准确、更全面的度量。
[https://arxiv.org/pdf/2205.11097.pdf](A Fine-grained Interpretability Evaluation Benchmark for Neural NLP)