Hermite矩阵

Hermite矩阵

文章目录

  • Hermite矩阵
    • 一、正规矩阵
          • 【定义】A^H^矩阵
          • 【定理】 A^H^的运算性质
          • 【定义】正规矩阵、特殊的正规矩阵
          • 【定理】与正规矩阵酉相似的矩阵也是正规矩阵
          • 【定理】正规的上(下)三角矩阵必为对角矩阵
          • 【定义】复向量的内积
          • 【定理】Schmitt正交化
    • 二、酉矩阵(unitary)
          • 【定理】酉矩阵的判定
          • 【定理】数值矩阵与酉矩阵性质的类比
          • 【定理】酉矩阵的所有特征值模都等于1,并且属于不同特征值的特征向量正交
          • 【定理】Schur定理
          • 【定理】A酉相似于对角矩阵,则A为正规矩阵
    • 三、Hermite矩阵
          • 【定理】Hermite矩阵的特征值必为实数,并且属于不同特征值的特征向量正交
          • 【定理】反Hermite矩阵的特征值为0或纯虚数,并且属于不同特征值的特征向量正交
          • 【定理】Hermite/反Hermite矩阵当且仅当的判断
    • 四、Hermite二次型
          • 【定义】Hermite二次型
          • 【定义】复相合
          • 【定理】每个二次型都可酉变换为标准型
          • 【定理】Hermite二次型经过适当可逆线性替换可化为规范型
          • 【定理】Hermite二次型的规范型唯一
    • 五、正定Hermite矩阵
          • 【定义】Hermite二次型的正定、负定、半正定、半负定、不定
          • 【定理】正定、负定、半正定、半负定、不定 与 正负惯性指数 的关系
          • 【定义】Hermite矩阵的正定、负定、半正定、半负定、不定
          • 【定理】正定的当且仅当条件

将线性代数中的实矩阵扩展为复矩阵

一、正规矩阵

【定义】AH矩阵

对复矩阵 A A A
A = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ] A= \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & \\ a_{21} & a_{22} & \cdots & a_{2n} & \\ \vdots & \vdots && \vdots & \\ a_{n1} & a_{n2} & \cdots & a_{nn} & \\ \end{bmatrix} A= a11a21an1a12a22an2a1na2nann

A H A^H AH 矩阵为
A H = A T ‾ = A ‾ T = [ a 11 ‾ a 12 ‾ ⋯ a 1 n ‾ a 21 ‾ a 22 ‾ ⋯ a 2 n ‾ ⋮ ⋮ ⋮ a n 1 ‾ a n 2 ‾ ⋯ a n n ‾ ] A^H=\overline{A^T}=\overline{A}^T= \begin{bmatrix} \overline{a_{11}} & \overline{a_{12}} & \cdots & \overline{a_{1n}} & \\ \overline{a_{21}} & \overline{a_{22}} & \cdots & \overline{a_{2n}} & \\ \vdots & \vdots && \vdots & \\ \overline{a_{n1}} & \overline{a_{n2}} & \cdots & \overline{a_{nn}} & \\ \end{bmatrix} AH=AT=AT= a11a21an1a12a22an2a1na2nann

【定理】 AH的运算性质

A H A^H AH 的定义可知:

  • ( A H ) H = A (A^H)^H=A (AH)H=A
  • ( A + B ) H = A H + B H (A+B)^H=A^H+B^H (A+B)H=AH+BH
  • ( A B ) H = B H A H (AB)^H=B^HA^H (AB)H=BHAH
  • ( k A ) H = k ‾ A H , k ∈ C (kA)^H=\overline{k}A^H,k\in\mathbb C (kA)H=kAH,kC
  • ( A H ) H = A (A^H)^H=A (AH)H=A
【定义】正规矩阵、特殊的正规矩阵

正规矩阵是满足 A H A = A A H A^HA=AA^H AHA=AAH 的矩阵,有:

  • 酉矩阵: A H A = A A H = E A^HA=AA^H=E AHA=AAH=E (参考正交矩阵 A T A = A A T = E A^TA=AA^T=E ATA=AAT=E) 是正规矩阵
  • Hermite矩阵: A H = A A^H=A AH=A (参考对阵矩阵 A H = A A^H=A AH=A)是正规矩阵
  • 反Hermite矩阵: A H = − A A^H=-A AH=A (参考反对称矩阵/反称矩阵 A T = − A A^T=-A AT=A)是正规矩阵
  • 对角矩阵是正规矩阵
【定理】与正规矩阵酉相似的矩阵也是正规矩阵
【定理】正规的上(下)三角矩阵必为对角矩阵
【定义】复向量的内积

< α j , α i > = α i H α j <\alpha_j,\alpha_i>=\alpha^H_i\alpha_j <αj,αi>=αiHαj

比如 复向量 γ 1 = [ 1 − i , 1 , 2 ] T , γ 2 = [ 1 , − 1 , i ] T \gamma_1=[1-i,1,2]^T,\gamma_2=[1,-1,i]^T γ1=[1i,1,2]T,γ2=[1,1,i]T,求其内积

  • < γ 1 , γ 2 > = γ 2 H γ 1 = ( 1 , − 1 , − i ) [ 1 − i , 1 , 2 ] T = − 3 i <\gamma_1,\gamma_2>=\gamma_2^H\gamma_1=(1,-1,-i)[1-i,1,2]^T=-3i <γ1,γ2>=γ2Hγ1=(1,1,i)[1i,1,2]T=3i
  • < γ 2 , γ 1 > = γ 1 H γ 2 = ( 1 + i , 1 , 2 ) [ 1 , − 1 , i ] T = 3 i <\gamma_2,\gamma_1>=\gamma_1^H\gamma_2=(1+i,1,2)[1,-1,i]^T=3i <γ2,γ1>=γ1Hγ2=(1+i,1,2)[1,1,i]T=3i
【定理】Schmitt正交化

注意:下面的内积是复向量内积

α 1 , α 2 , ⋯   , α n \alpha_1,\alpha_2,\cdots,\alpha_n α1,α2,,αn(线性无关) ⟶ \longrightarrow β 1 , β 2 , ⋯   , β n \beta_1,\beta_2,\cdots,\beta_n β1,β2,,βn(正交) ⟶ \longrightarrow η 1 , η 2 , ⋯   , η n \eta_1,\eta_2,\cdots,\eta_n η1,η2,,ηn(标准正交)
β 1 = α 1 \beta_1=\alpha_1 β1=α1

β 2 = α 2 − < α 2 , β 1 > < β 1 , β 1 > β 1 \beta_2=\alpha_2-\frac{<\alpha_2,\beta_1>}{<\beta_1,\beta_1>}\beta_1 β2=α2<β1,β1><α2,β1>β1

β 3 = α 3 − < α 3 , β 2 > < β 2 , β 2 > β 2 − < α 3 , β 1 > < β 1 , β 1 > β 1 \beta_3=\alpha_3-\frac{<\alpha_3,\beta_2>}{<\beta_2,\beta_2>}\beta_2-\frac{<\alpha_3,\beta_1>}{<\beta_1,\beta_1>}\beta_1 β3=α3<β2,β2><α3,β2>β2<β1,β1><α3,β1>β1

二、酉矩阵(unitary)

酉矩阵是正交矩阵的推广

【定理】酉矩阵的判定

矩阵 A A A 为酉矩阵当且仅当下列条件之一被满足:

  • A H A = A A H = E A^HA=AA^H=E AHA=AAH=E
  • A − 1 = A H A^{-1}=A^H A1=AH
【定理】数值矩阵与酉矩阵性质的类比

数值矩阵的很多性质都可以在酉矩阵得到对应

  1. 正交
  • 正交矩阵 A T A = A A T = E A^TA=AA^T=E ATA=AAT=E ⇔ \Leftrightarrow A = [ α 1 , α 2 , ⋯   , α n ] A=[\alpha_1,\alpha_2,\cdots,\alpha_n] A=[α1,α2,,αn] 是标准正交向量组(不一定非得是基)

  • 酉矩阵 A H A = A A H = E A^HA=AA^H=E AHA=AAH=E ⇔ \Leftrightarrow A = [ α 1 , α 2 , ⋯   , α n ] A=[\alpha_1,\alpha_2,\cdots,\alpha_n] A=[α1,α2,,αn] 是标准正交向量组

  1. 相似
  • 相似: P − 1 A P = B P^{-1}AP=B P1AP=B,其中 P P P 可逆;正交相似: Q − 1 A Q = Q T A Q = B Q^{-1}AQ=Q^{T}AQ=B Q1AQ=QTAQ=B,其中 Q Q Q 正交
  • 酉相似: U H A U = U − 1 A U = B U^HAU=U^{-1}AU=B UHAU=U1AU=B,其中 U U U 是酉矩阵
【定理】酉矩阵的所有特征值模都等于1,并且属于不同特征值的特征向量正交

这是因为在产生酉矩阵的过程中,所有的向量都进行了Schmitt正交化

【定理】Schur定理

A ∈ C n × n A\in\mathbb C^{n\times n} ACn×n

则存在n阶酉矩阵 U U U,使得 T = U H A U T=U^HAU T=UHAU 为上三角矩阵,其主对角元为 A A A 的全部特征值

【定理】A酉相似于对角矩阵,则A为正规矩阵

A ∈ C n × n A\in\mathbb C^{n\times n} ACn×n

A A A 为正规矩阵当且仅当 A A A 酉相似于对角矩阵 d i a g ( λ 1 , λ 2 , ⋯   , λ n ) diag(\lambda_1,\lambda_2,\cdots,\lambda_n) diag(λ1,λ2,,λn),其中 ∣ λ i ∣ = 1 |\lambda_i|=1 λi=1

三、Hermite矩阵

【定理】Hermite矩阵的特征值必为实数,并且属于不同特征值的特征向量正交
【定理】反Hermite矩阵的特征值为0或纯虚数,并且属于不同特征值的特征向量正交
【定理】Hermite/反Hermite矩阵当且仅当的判断

A ∈ C n × n A\in\mathbb C^{n\times n} ACn×n,则 A A A 为Hermite矩阵

当且仅当 A A A 酉相似于对角矩阵 d i a g ( λ 1 , λ 2 , ⋯   , λ n ) diag(\lambda_1,\lambda_2,\cdots,\lambda_n) diag(λ1,λ2,,λn),其中 λ i \lambda_i λi 均为实数,它们为 A A A 的全部特征值


A ∈ C n × n A\in\mathbb C^{n\times n} ACn×n,则 A A A 为反Hermite矩阵

当且仅当 A A A 酉相似于对角矩阵 d i a g ( λ 1 , λ 2 , ⋯   , λ n ) diag(\lambda_1,\lambda_2,\cdots,\lambda_n) diag(λ1,λ2,,λn),其中 λ i \lambda_i λi 的实部均为0,它们为 A A A 的全部特征值

求酉相似对角化的酉矩阵的方法(类似本科线性代数):
U − 1 A U = Λ = [ λ 1 λ 2 ⋱ λ n ] U^{-1}AU=\Lambda= \begin{bmatrix} \lambda_1 \\ & \lambda_2 \\ && \ddots \\ &&& \lambda_n \end{bmatrix} U1AU=Λ= λ1λ2λn
两边同时左乘 U U U
A U = U A AU=UA AU=UA
按列分块得到
A [ η 1 , η 2 , ⋯   , η n ] = [ η 1 , η 2 , ⋯   , η n ] [ λ 1 λ 2 ⋱ λ n ] A[\eta_1,\eta_2,\cdots,\eta_n]=[\eta_1,\eta_2,\cdots,\eta_n] \begin{bmatrix} \lambda_1 \\ & \lambda_2 \\ && \ddots \\ &&& \lambda_n \end{bmatrix} A[η1,η2,,ηn]=[η1,η2,,ηn] λ1λ2λn
A A A λ i \lambda_i λi 乘进去,得到:
A η i = λ i η i A\eta_i=\lambda_i\eta_i Aηi=λiηi

四、Hermite二次型

将线性代数的实二次型扩展到复二次型

【定义】Hermite二次型

复二次型的表达式:
f ( x 1 , x 2 , ⋯   , x n ) = ∑ ∑ a i j x i ‾ x j f(x_1,x_2,\cdots,x_n)=\sum\sum a_{ij} \overline{x_i}x_j f(x1,x2,,xn)=∑∑aijxixj
其中 a i j = a j i ‾ a_{ij}=\overline{a_{ji}} aij=aji

因为
A = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ] A= \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{bmatrix} A= a11a21an1a12a22an2a1na2nann
具有性质 A H = A A^H=A AH=A,故 A A A 为 Hermite 矩阵(即为 Hermite 二次型),可以写为 f ( x 1 , x 2 , ⋯   , x n ) = x H A x f(x_1,x_2,\cdots,x_n)=x^HAx f(x1,x2,,xn)=xHAx

二次型的核心问题是怎么把二次型标准化(在一定的可逆变换下,消除掉所有的交叉项)

【定义】复相合

A , B ∈ C n × n A,B\in\mathbb C^{n\times n} A,BCn×n,如果存在 n 阶可逆矩阵 Q Q Q,使得 Q H A Q = B Q^HAQ=B QHAQ=B,则称 A A A B B B 复相合

【定理】每个二次型都可酉变换为标准型

任意 Hermite 二次型经过某个酉变换 x = U y x=Uy x=Uy U H = U − 1 U^H=U^{-1} UH=U1,可以化为标准型 λ 1 y 1 ‾ y 1 + λ 2 y 2 ‾ y 2 + ⋯ + λ n y 2 ‾ y n \lambda_1\overline{y_1}y_1+\lambda_2\overline{y_2}y_2+\cdots+\lambda_n\overline{y_2}y_n λ1y1y1+λ2y2y2++λny2yn,这里 λ i \lambda_i λi A A A 的全部特征值

【定理】Hermite二次型经过适当可逆线性替换可化为规范型

Hermite二次型经过适当的可逆线性替换 x = Q z x=Qz x=Qz,这里 Q ∈ C n × n Q\in\mathbb C^{n\times n} QCn×n 为可逆矩阵,可以华为规范型:
f ( x 1 , x 2 , ⋯   , x n ) = z 1 ‾ z 1 + ⋯ + z p ‾ z p − z p + 1 ‾ z p + 1 − ⋯ z r ‾ z r f(x_1,x_2,\cdots,x_n)=\overline{z_1}z_1+\cdots+\overline{z_p}z_p-\overline{z_{p+1}}z_{p+1}-\cdots\overline{z_r}z_r f(x1,x2,,xn)=z1z1++zpzpzp+1zp+1zrzr
这里 r r r 为二次型 f f f 的秩

【定理】Hermite二次型的规范型唯一

五、正定Hermite矩阵

【定义】Hermite二次型的正定、负定、半正定、半负定、不定
  • 正定:如果 ∀ x ≠ 0 \forall x\neq0 x=0 x H A x > 0 x^HAx>0 xHAx>0 x H A x = 0 x^HAx=0 xHAx=0 当且仅当 x = 0 x=0 x=0,则称二次型 f f f 为正定的
  • 负定:如果 ∀ x ≠ 0 \forall x\neq0 x=0 x H A x < 0 x^HAx<0 xHAx<0 x H A x = 0 x^HAx=0 xHAx=0 当且仅当 x = 0 x=0 x=0,则称二次型 f f f 为负定的
  • 半正定:如果 ∀ x ≠ 0 \forall x\neq0 x=0 x H A x ≥ 0 x^HAx\geq0 xHAx0 ∃ x ≠ 0 \exist x\neq0 x=0,使得 x H A x = 0 x^HAx=0 xHAx=0,则称二次型 f f f 为半正定的
  • 半负定:如果 ∀ x ≠ 0 \forall x\neq0 x=0 x H A x ≤ 0 x^HAx\leq0 xHAx0 ∃ x ≠ 0 \exist x\neq0 x=0,使得 x H A x = 0 x^HAx=0 xHAx=0,则称二次型 f f f 为半负定的
  • 不定:如果 ∃ x 1 ≠ 0 \exist x_1\neq0 x1=0,使得 x H A x > 0 x^HAx>0 xHAx>0,又 ∃ x 2 ≠ 0 \exist x_2\neq0 x2=0,使得 x H A x < 0 x^HAx<0 xHAx<0,则称二次型 f f f 为不定的
【定理】正定、负定、半正定、半负定、不定 与 正负惯性指数 的关系

p p p 是正惯性指数, n n n 是负惯性指数, r r r 是二次型的秩

  • 正定 ⟺ \Longleftrightarrow p = r = n p=r=n p=r=n
  • 负定 ⟺ \Longleftrightarrow p = 0 , r = n p=0,r=n p=0r=n
  • 半正定 ⟺ \Longleftrightarrow p = r < n p=rp=r<n
  • 半负定 ⟺ \Longleftrightarrow p = 0 , r < n p=0,rp=0r<n
  • 不定 ⟺ \Longleftrightarrow 0 < p < r ≤ n 00<p<rn
【定义】Hermite矩阵的正定、负定、半正定、半负定、不定

如果 Hermite 矩阵对应的二次型是正定、负定、半正定、半负定、不定的,则该Hermite矩阵是正定、负定、半正定、半负定、不定的

【定理】正定的当且仅当条件

A A A 为 n 阶矩阵,则 A A A 为正定的当且仅当下列条件之一:

  • A A A 的所有特征值全部大于0
  • 存在可逆矩阵 P ∈ C n × n P\in \mathbb C^{n\times n} PCn×n,使得 P H A P = E P^HAP=E PHAP=E
  • 存在可逆矩阵 Q ∈ C n × n Q\in \mathbb C^{n\times n} QCn×n,使得 A = Q H Q A=Q^HQ A=QHQ
  • A A A 的各级顺序主子式全大于0

你可能感兴趣的:(矩阵代数与矩阵分析,矩阵,线性代数)