Burnside 引理 与 Pólya 定理 学习笔记

为了防止明天就把好不容易听完的东西都还给 rabbit_lb 了,还是记一点吧。

1. 群论基础

1.1 群(group) 的定义

给定集合 G G G G G G上的二元运算 ⋅ \cdot ,满足下列条件称之为群:

  • 封闭性:若 a , b ∈ G a,b\in G a,bG,则 a ⋅ b ∈ G a\cdot b\in G abG
  • 结合律:对于任意 a , b , c ∈ G a,b,c\in G a,b,cG,有 ( a ⋅ b ) ⋅ c = a ⋅ ( b ⋅ c ) (a\cdot b)\cdot c=a\cdot (b\cdot c) (ab)c=a(bc)
  • 单位元:存在单位元 e ∈ G e\in G eG ∀ a ∈ G ,   a ⋅ e = e ⋅ a = a \forall a\in G,\, a\cdot e=e\cdot a=a aG,ae=ea=a
  • 逆元:对于任意 a ∈ G a\in G aG,存在 b ∈ G b\in G bG,使得 a ⋅ b = b ⋅ a = e a\cdot b=b\cdot a=e ab=ba=e。记为 b = a − 1 b=a^{-1} b=a1

1.2 一些概念

  • 群元素个数有限则称为有限群,无限则称为无限群

  • 有限群 G G G 的元素个数叫做群的阶,记做 ∣ G ∣ |G| G

  • G G G G G G上的二元运算 ⋅ \cdot 构成一个群, H H H G G G 的子集,且 H H H 在原有运算下也是一个群,则 H H H G G G 的一个子群。

  • 若群 G G G 的任意两元素均满足交换律,则称 G G G 为交换群(Abel 群)。

1.3 群的性质

  • 单位元唯一: e 1 e 2 = e 1 = e 2 e_1e_2=e_1=e_2 e1e2=e1=e2
  • 消去律: a b = a c ⇒ b = c ab=ac\Rightarrow b=c ab=acb=c
  • 每个元的逆元唯一:反证,若 a a − 1 = a − 1 a = e ,   a b − 1 = a − 1 b = e aa^{-1}=a^{-1}a=e,\, ab^{-1}=a^{-1}b=e aa1=a1a=e,ab1=a1b=e,则 a a − 1 = a b − 1 aa^{-1}=ab^{-1} aa1=ab1,即 a − 1 = b a^{-1}=b a1=b
  • G G G 有限,且 a ∈ G a\in G aG,则存在最小正整数 r r r,使得 a r = e a^r=e ar=e,且 a − 1 = a r − 1 a^{-1}=a^{r-1} a1=ar1 r r r 称为 a a a 的阶。

2. 置换群

2.1 置换

[ 1 , n ] [1,n] [1,n] 到自身的一个映射称为 n n n 阶置换,表示为 ( 1 2 … n a 1 a 2 … a n ) \begin{pmatrix}1&2&\dots & n\\a_1&a_2&\dots&a_n\end{pmatrix} (1a12a2nan),其中 a 1 , a 2 , … , a n a_1,a_2,\dots,a_n a1,a2,,an [ 1 , n ] [1,n] [1,n] 的一个排列。

n n n 阶置换共有 n ! n! n! 个,同一个置换有 n ! n! n! 中表示方法,如 p 1 = ( 1 2 3 4 3 1 2 4 ) = ( 3 1 4 2 2 3 4 1 ) p_1=\begin{pmatrix}1&2&3&4\\3&1&2&4\end{pmatrix}=\begin{pmatrix}3&1&4&2\\2&3&4&1\end{pmatrix} p1=(13213244)=(32134421) n n n 阶置换也可以看作 [ 1 , n ] [1,n] [1,n] 上的一元运算。

P 1 = ( 1 2 … n a 1 a 2 … a n ) ,   P 2 = ( 1 2 … n b 1 b 2 … b n ) P_1=\begin{pmatrix}1&2&\dots & n\\a_1&a_2&\dots&a_n\end{pmatrix},\, P_2=\begin{pmatrix}1&2&\dots & n\\b_1&b_2&\dots&b_n\end{pmatrix} P1=(1a12a2nan),P2=(1b12b2nbn),则定义置换乘法 P 1 P 2 = ( 1 2 … n b a 1 b a 2 … b a n ) P_1P_2=\begin{pmatrix}1&2&\dots & n\\b_{a_1}&b_{a_2}&\dots&b_{a_n}\end{pmatrix} P1P2=(1ba12ba2nban)

置换乘法不满足交换律,但满足结合律。

2.2 置换群

[ 1 , n ] [1,n] [1,n] 上由多个置换组成的集合,在 2.1 的乘法定义下构成的群,称为置换群

  • 封闭性: ( 1 2 … n a 1 a 2 … a n ) ( a 1 a 2 … a n b 1 b 2 … b n ) = ( 1 2 … n b 1 b 2 … b n ) \begin{pmatrix}1&2&\dots & n\\a_1&a_2&\dots&a_n\end{pmatrix} \begin{pmatrix}a_1&a_2&\dots & a_n\\b_1&b_2&\dots&b_n\end{pmatrix}=\begin{pmatrix}1&2&\dots & n\\b_1&b_2&\dots&b_n\end{pmatrix} (1a12a2nan)(a1b1a2b2anbn)=(1b12b2nbn)
  • 结合律:由 2.1 知置换乘法满足结合律。
  • 单位元: e = ( 1 2 … n 1 2 … n ) e=\begin{pmatrix}1&2&\dots & n\\1&2&\dots&n\end{pmatrix} e=(1122nn)
  • 逆元: ( 1 2 … n a 1 a 2 … a n ) − 1 = ( a 1 a 2 … a n 1 2 … n ) \begin{pmatrix}1&2&\dots & n\\a_1&a_2&\dots&a_n\end{pmatrix}^{-1}=\begin{pmatrix}a_1&a_2&\dots & a_n\\1&2&\dots&n\end{pmatrix} (1a12a2nan)1=(a11a22ann)

[ 1 , n ] [1,n] [1,n] 上的所有( n ! n! n! 个)置换构成的群,称为 n n n 阶对称群,记作 S n S_n Sn。平时所说的 [ 1 , n ] [1,n] [1,n] 上的一个置换群,一定是 S n S_n Sn的子群。

2.3 循环

2.3.1 置换的循环表示

置换 ( 1 2 … n a 1 a 2 … a n ) \begin{pmatrix}1&2&\dots & n\\a_1&a_2&\dots&a_n\end{pmatrix} (1a12a2nan) 可以写作 ( 1 , a 1 , a a 1 , …   ) ( …   ) (1,a_1,a_{a_1},\dots)(\dots) (1,a1,aa1,)() 的形式,称为置换的循环表示。E.g. ( 1 2 3 4 5 3 1 2 5 4 ) = ( 132 ) ( 45 ) \begin{pmatrix}1&2&3 & 4&5\\3&1&2&5&4\end{pmatrix}=(132)(45) (1321324554)=(132)(45) ( 1 2 3 4 5 5 2 3 1 4 ) = ( 154 ) ( 2 ) ( 3 ) \begin{pmatrix}1&2&3 & 4&5\\5&2&3&1&4\end{pmatrix}=(154)(2)(3) (1522334154)=(154)(2)(3)

( a 1 a 2 … a m ) (a_1a_2\dots a_m) (a1a2am) 称为 m m m 阶循环,有 m m m 种表示方法。

通常情况下,我们可以忽略所有阶为 1 1 1 的循环。两个不相交的循环之间满足交换律。

定理:任意置换可表示成若干不相交循环的积。

证明:考虑令置换 i i i a i a_i ai 连边,图由若干个环构成。显然每个环都可以表示成一个循环。

2.3.2 共轭类

我们设置换 p p p 的循环表示为 $p=(a_1a_2\dots a_{k_1})(b_1,b_2\dots b_{k_2})\dots (h_1h_2\dots h_{k_n}),其中 $ ∑ i = 1 n k i = n \sum\limits_{i=1}^n k_i=n i=1nki=n。设 k k k 阶循环出现的次数为 c k c_k ck
那么置换 p p p 的格式为 ( 1 ) c 1 ( 2 ) c 2 … ( n ) c n (1)^{c_1}(2)^{c_2}\dots(n)^{c_n} (1)c1(2)c2(n)cn。E.g. ( 1 ) ( 23 ) ( 4567 ) (1)(23)(4567) (1)(23)(4567) 的格式为 ( 1 ) 1 ( 2 ) 1 ( 4 ) 1 (1)^1(2)^1(4)^1 (1)1(2)1(4)1

S n S_n Sn 中所有相同格式的置换构成一个共轭类

定理: S n S_n Sn ( 1 ) c 1 ( 2 ) c 2 … ( n ) c n (1)^{c_1}(2)^{c_2}\dots(n)^{c_n} (1)c1(2)c2(n)cn 所在的共轭类元素个数为 n ! ( c 1 ! c 2 ! … n ! ) ( 1 c 1 2 c 2 … n c n ) \dfrac{n!}{(c_1!c_2!\dotsc_n!)(1^{c_1}2^{c_2}\dots n^{c_n})} (c1!c2!n!)(1c12c2ncn)n!

可以这样理解这个式子:

  • 一个长度为 i i i 的循环共有 i i i 种表示, c i c_i ci 个长度为 i i i 的循环有 i c i i^{c_i} ici 种表示;
  • 对互不相交的 c i c_i ci 个循环枚举全排列,共有 c i ! c_i! ci! 种表示。
2.3.3 对换与奇偶置换

2 2 2 阶循环叫做对换

定理:任意循环都可以表示为若干对换的积。

推柿子:
( 1   2   3 … n − 1 ) ( 1   n ) = ( 1 2 … n − 1 2 3 … 1 ) ( 1 2 … n − 1 n n 2 … n − 1 1 ) = ( 1 2 … n − 1 n 2 3 … n 1 ) = ( 1   2   …   n ) \begin{aligned} &(1\, 2\, 3\dots n-1)(1\, n)\\ =&\begin{pmatrix}1&2&\dots & n-1\\2&3&\dots&1\end{pmatrix}\begin{pmatrix}1&2&\dots & n-1&n\\n&2&\dots&n-1&1\end{pmatrix}\\ =&\begin{pmatrix}1&2&\dots & n-1&n\\2&3&\dots&n&1\end{pmatrix}\\ =&(1\,2\,\dots\,n) \end{aligned} ===(123n1)(1n)(1223n11)(1n22n1n1n1)(1223n1nn1)(12n)
那么进一步地,有分解 ( 12 … n ) = ( 12 ) ( 13 ) … ( 1 n ) (1 2\dots n)=(12)(13)\dots(1n) (12n)=(12)(13)(1n)。注意每个置换的分解不唯一。

若一个置换能分解为奇数个对换之积,则为奇置换;否则为偶置换

Warning. 置换相乘的奇偶性类似于自然数加法,而非自然数乘法:奇 x 奇 = 偶,奇 x 偶 = 奇。

3. Burnside 引理

3.1 等价类与 k k k 不动置换类

G G G [ 1 , n ] [1,n] [1,n] 上的一个置换群, k ∈ [ 1 , n ] k\in [1,n] k[1,n] G G G 中使 k k k 元素保持不变的置换全体,称为 k k k 不动置换类,记作 Z k Z_k Zk

定理:置换群 G G G k k k 不动置换类 Z k Z_k Zk G G G 的子群。

  • 封闭性: k k k 怎么置换都不动。
  • 结合性:显然。
  • 单位元: G G G 的单位元也在 Z k Z_k Zk 中。
  • 逆元: Z k Z_k Zk 中的置换 p p p G G G 中的逆元 p − 1 p^{-1} p1 也在 Z k Z_k Zk 中。

置换 p i p_i pi 使图像 k k k 变为 l l l,则称 k k k l l l 属于同一个等价类。设 k k k 所在的等价类记为 E k E_k Ek

Burnside 引理 与 Pólya 定理 学习笔记_第1张图片

如图,将正方形四个顶点红蓝染色,等价类个数为 6 6 6。(每行是一个等价类)

3.2 轨道稳定子定理

定理:设 G G G [ 1 , n ] [1,n] [1,n] 上的一个 置换群, E k E_k Ek [ 1 , n ] [1,n] [1,n] G G G 的作用下包含 k k k 的等价类, Z k Z_k Zk k k k不动置换类。有 ∣ E k ∣ ∣ Z k ∣ = ∣ G ∣ |E_k||Z_k |=|G| Ek∣∣Zk=G

证明:每个等价类有 ∣ E k ∣ |E_k| Ek 个元素,同时因为它们属于同一等价类,每个元素的 Z k Z_k Zk 相同。因此这些 Z k Z_k Zk 覆盖了整个 G G G,即每个等价类都有 ∣ E k ∣ ∣ Z k ∣ = ∣ G ∣ |E_k||Z_k |=|G| Ek∣∣Zk=G

3.3 Burnside 引理

将上式变形,有:
∑ k = 1 n ∣ Z k ∣ ∣ G ∣ = ∑ k = 1 n 1 ∣ E k ∣ \sum_{k=1}^n \frac{|Z_k|}{|G|}=\sum_{k=1}^n \frac{1}{|E_k|} k=1nGZk=k=1nEk1
仔细想一下会发现 ∑ k = 1 n 1 ∣ E k ∣ \sum_{k=1}^n \frac{1}{|E_k|} k=1nEk1 就是等价类个数。

然而问题并没有解决,因为 Z k Z_k Zk 不好求。进一步地,我们定义 c 1 ( a k ) c_1(a_k) c1(ak) 表示在置换 a k a_k ak 的作用下不动点的个数,即长度为 1 1 1 的循环个数。那么等价类个数为:
l = 1 ∣ G ∣ ∑ j − 1 n c 1 ( a j ) l=\frac{1}{|G|}\sum_{j-1}^n c_1(a_j) l=G1j1nc1(aj)
这个式子就是 Burnside 引理。

4. Pólya 定理

Pólya 定理是 Burnside 引理的推广,应用于 染色问题循环同构 方案计数。

G = { P 1 , P 2 , … , P g } G=\{P_1,P_2,\dots,P_g\} G={P1,P2,,Pg} n n n 个对象 的一个置换群, C ( P k ) C(P_k) C(Pk) 是置换 P k P_k Pk 的循环的个数,用 m m m 种颜色对 n n n 个对象着色,着色方案数为
l = 1 ∣ G ∣ ∑ j = 1 g m C ( P j ) l=\frac{1}{|G|} \sum_{j=1}^g m^{C(P_j)} l=G1j=1gmC(Pj)

接下来用一个例题说明该定理的具体用法。

用火柴搭一个足球,有多少种方案?

Tips: 足球有 60 60 60 个顶点, 90 90 90 条棱, 12 12 12 个五边形, 20 20 20 个六边形。

  • 不动: 1 1 1 种置换, 2 90 2^{90} 290 种染色;
  • 五边形对五边形转: 6 × 4 = 24 6\times 4=24 6×4=24 种置换, 2 90 / 5 2^{90/5} 290/5 种染色;
  • 六边形对六边形转: 10 × 2 = 20 10\times 2=20 10×2=20 种置换, 2 90 / 3 2^{90/3} 290/3 种染色;
  • 棱中点对棱中点转: 15 15 15 种置换, 0 0 0 种染色(一定都会变)。

则本质不同的方案数为 ( 2 90 + 24 × 2 18 + 20 × 2 30 ) / ( 1 + 24 + 20 + 15 ) (2^{90}+24\times 2^{18}+20\times 2^{30})/(1+24+20+15) (290+24×218+20×230)/(1+24+20+15)

5. 例题

P4980【模板】Polya 定理

板子。发现置换只有旋转,考虑枚举旋转的角度,有:
1 n ∑ k = 1 n n gcd ⁡ ( k , n ) \frac{1}{n}\sum_{k=1}^n n^{\gcd(k,n)} n1k=1nngcd(k,n)
枚举 gcd ⁡ \gcd gcd,可以变成
1 n ∑ d ∣ n n d ∑ k = 1 n d [ gcd ⁡ ( k , n d ) = 1 ] \frac{1}{n} \sum_{d\mid n}n^d \sum_{k=1}^{\frac{n}{d}}[\gcd(k,\frac{n}{d})=1] n1dnndk=1dn[gcd(k,dn)=1]
也就是
1 n ∑ d ∣ n n d φ ( n d ) \frac{1}{n}\sum_{d\mid n}n^d\varphi(\frac{n}{d}) n1dnndφ(dn)
暴力计算欧拉函数即可通过。

Code
#define int long long 
const int mod=1e9+7;
int T,n;
il int qpow(int n,int k=mod-2)
{
    int res=1; 
    for(;k;n=n*n%mod,k>>=1) if(k&1) res=res*n%mod;
    return res;
}
il int phi(int x)
{
    int res=x;
    for(int i=2;i*i<=x;i++)
    {
        if(x%i==0) res=res/i*(i-1);
        while(x%i==0) x/=i;
    }
    if(x>1) res=res/x*(x-1);
    return res;
}
signed main()
{
    T=read();
    while(T--)
    {
        n=read(); 
        int ans=0;
        for(int d=1;d*d<=n;d++) if(n%d==0)
        {
            (ans+=qpow(n,d)*phi(n/d)%mod)%=mod;
            if(d*d!=n) (ans+=qpow(n,n/d)*phi(d)%mod)%=mod;
        }
        ans=ans*qpow(n)%mod;
        printf("%lld\n",ans);
    }
    return 0;
}

CF1065E Side Transmutations

首先可以发现翻转是可以抵消的。如果我们操作 b 1 b_1 b1,再操作 b 2 b_2 b2,再操作 b 1 b_1 b1,这相当于只操作了一个 b 2 b_2 b2。也就是说,想要得到最终状态我们只关心每个 b i b_i bi 被操作次数的奇偶性。

考虑 Polya 定理,但是发现不动点看起来不好算。

进一步对 b i b_i bi 进行转化,考虑将字符串分成形如 [ b 1 , b 2 ) , [ b 2 , b 3 ) , … [b_1,b_2),[b_2,b_3),\dots [b1,b2),[b2,b3), 的若干段。那么我们统计不动点的时候只关心每一段是否被翻转。
不难看出,字符串每段的翻转状态与 b b b 的操作次数奇偶性序列构成双射。设 l e n i len_i leni 表示第 i i i 段的长度。

那么如果第 i i i 段被翻转了,这一段本身的贡献是 ∣ A ∣ l e n i |A|^{len_i} Aleni;否则为 ∣ A ∣ 2 l e n i |A|^{2len_i} A2leni。而对于中间长度为 n − 2 l e n m n-2len_m n2lenm 且永远不会被翻转的段,贡献恒为 ∣ A ∣ n − 2 l e n m |A|^{n-2len_m} An2lenm

故设 T = { 1 , 2 , … , n } T=\{1,2,\dots,n\} T={1,2,,n},本质不同的方案数为
∣ A ∣ n − 2 l e n m 2 m ∑ S ⊆ T ( [ i ∈ S ] ∣ A ∣ l e n i ) + ( [ i ∉ S ] ∣ A ∣ 2 l e n i ) = ∣ A ∣ n − 2 l e n m 2 m ∏ i = 1 m ( ∣ A ∣ l e n i + ∣ A ∣ 2 l e n i ) \begin{aligned} &\frac{|A|^{n-2len_m}}{2^m}\sum_{S\sube T}([i\in S]|A|^{len_i})+([i\notin S]|A|^{2len_i})\\ =&\frac{|A|^{n-2len_m}}{2^m}\prod_{i=1}^m (|A|^{len_i}+|A|^{2len_i}) \end{aligned} =2mAn2lenmST([iS]Aleni)+([i/S]A2leni)2mAn2lenmi=1m(Aleni+A2leni)
直接计算即可,时间复杂度为 O ( m log ⁡ n ) \mathcal{O}(m\log n) O(mlogn)

Code
#define int long long
const int N=2e5+5,mod=998244353;
int n,m,A,b[N];
int l[N];
il int qpow(int n,int k=mod-2)
{
    int res=1;
    for(;k;n=n*n%mod,k>>=1) if(k&1) res=res*n%mod;
    return res;
}
signed main()
{
    n=read(),m=read(),A=read();
    for(int i=1;i<=m;i++) b[i]=read();
    for(int i=1;i<=m;i++) l[i]=b[i]-b[i-1];
    int sum=1,ans=0;
    for(int i=1;i<=m;i++) sum=sum*(qpow(A,l[i])+qpow(A,2*l[i]))%mod;
    ans=sum*qpow(A,n-2*b[m])%mod;
    ans=ans*qpow(qpow(2,m))%mod;
    printf("%lld\n",ans);
    return 0;
}

ARC062F Painting Graphs with AtCoDeer

一个比较直观的性质是,一条边无论如何都转不出自己所在的边双连通分量。进一步地,发现实际上一条边转不出自己所在的点双。这似乎有点反直觉,但考虑下图,边无法从一个环移到另一个环:

Burnside 引理 与 Pólya 定理 学习笔记_第2张图片

那么根据这个结论,每个点双之间是独立的。分类讨论:

  • 如果一条边的两个端点不在同一点双里,这条边对答案的贡献是 k k k
  • 如果点双是一个环,这是 Polya 定理的板子;
  • 否则有结论:如果一个点双有至少两个环,所有边都可以任意交换。

考虑证明上述结论,我们只需证明存在一种方案,在不改变其他边的情况下交换两条边。

Burnside 引理 与 Pólya 定理 学习笔记_第3张图片

使用上图的做法可以交换两环交界处的两条边。对于不在两环交界处的边,可以先转到交界处再如此操作。
故设这个点双有 c n t cnt cnt 条边,对答案的贡献就是 c n t cnt cnt 条边涂 k k k 个颜色,不区分顺序的方案数。经典插板法,为 ( c n t + k − 1 k − 1 ) \binom{cnt+k-1}{k-1} (k1cnt+k1)

对以上三种情况分别计算贡献即可。

Code
#define int long long
const int N=205,mod=1e9+7;
int n,m,k;
vector<int> e[N];
int dfn[N],low[N],tot,num;
vector<int> t[N],q;
void tarjan(int u,int fa)
{
    dfn[u]=low[u]=++tot; q.push_back(u);
    for(auto v:e[u]) if(v^fa)
    {
        if(!dfn[v])
        {
            tarjan(v,u),low[u]=min(low[u],low[v]);
            if(low[v]>=dfn[u])
            {
                num++;
                while(q.back()!=u) 
                {
                    int x=q.back();
                    t[num].push_back(x),q.pop_back();
                    if(x==v) break;
                }
                t[num].push_back(u);
            }
        }
        else low[u]=min(low[u],dfn[v]);
    }
}
int bel[N];
il int qpow(int n,int k=mod-2)
{
    int res=1;
    for(;k;n=n*n%mod,k>>=1) if(k&1) res=res*n%mod;
    return res;
}
il int solve(int m)
{
    int res=0;
    for(int i=1;i<=m;i++) res=(res+qpow(k,__gcd(i,m)))%mod;
    res=res*qpow(m)%mod; return res;
} 
int jc[N],inv[N];
il void init(int mx)
{
    jc[0]=inv[0]=1;
    for(int i=1;i<=mx;i++) jc[i]=jc[i-1]*i%mod;
    inv[mx]=qpow(jc[mx]);
    for(int i=mx-1;i;i--) inv[i]=inv[i+1]*(i+1)%mod;
}
il int C(int n,int m) 
{
    if(m>n) return 0;
    return jc[n]*inv[n-m]%mod*inv[m]%mod;
}
signed main()
{
    n=read(),m=read(),k=read();
    for(int i=1;i<=m;i++)
    {
        int u=read(),v=read();
        e[u].push_back(v),e[v].push_back(u);
    }
    init(m+k);
    int ans=1;
    for(int i=1;i<=n;i++) if(!dfn[i]) tarjan(i,0);
    for(int i=1;i<=num;i++)
    {
        for(auto x:t[i]) bel[x]=i;
        int cnt=0;
        for(auto u:t[i])
            for(auto v:e[u]) if(bel[v]==i) cnt++;
        cnt>>=1;
        m-=cnt;
        if(cnt>t[i].size()) ans=ans*C(cnt+k-1,k-1)%mod;
        else if(cnt==t[i].size()) ans=ans*solve(cnt)%mod;
        else ans=ans*qpow(k,cnt)%mod;
    }
    printf("%lld\n",ans);
    return 0;
}

[HNOI2009] 图的同构计数

我们可以把每条边选与不选看作对一个完全图上的边黑白染色,这与原题意是等价的。

使用 Polya 定理,先枚举一个置换,并把置换写成循环的形式。考虑对在该置换下不变的染色方案进行计数。

根据一条边的两个端点是否在同一个循环内,分类讨论:

  • 如图,若一条边的两个端点属于同一循环,那么它应当与循环内所有长度相等的边同色。
    Burnside 引理 与 Pólya 定理 学习笔记_第4张图片
    那么一个长度为 l e n len len 的循环,其内部共有 ⌊ l e n 2 ⌋ \lfloor \frac{len}{2}\rfloor 2len 类等价的边。
  • 否则,若一条边连接了两个不同循环,设它们的长度分别为 l e n i , l e n j len_i,len_j leni,lenj。那么一条边需要做 lcm ( l e n i , l e n j ) \text{lcm}(len_i,len_j) lcm(leni,lenj) 次置换才能回到它原来的位置,即等价类个数为 gcd ⁡ ( l e n i , l e n j ) \gcd(len_i,len_j) gcd(leni,lenj)

综上,一个 l e n len len 序列对 polya 求和式子的贡献为
S = ∑ i = 1 n ( ⌊ l e n i 2 ⌋ + ∑ j = 1 i − 1 gcd ⁡ ( l e n i , l e n j ) ) S=\sum_{i=1}^n(\lfloor \frac{len_i}{2}\rfloor +\sum_{j=1}^{i-1} \gcd(len_i,len_j)) S=i=1n(⌊2leni+j=1i1gcd(leni,lenj))
发现这只与 l e n len len 数组有关而与具体的置换无关,考虑只枚举 l e n len len 数组,并计算有多少种对应的置换。由 2.3.2 可知,设 c i c_i ci 表示 l e n j = i len_j=i lenj=i j j j 的个数,对应的置换数为
n ! ∏ l e n i ∏ ( c i ! ) \frac{n!}{\prod len_i\prod (c_i!)} leni(ci!)n!
总答案为
1 n ! ∑ l e n n ! ∏ l e n i ∏ ( c i ! ) 2 S \frac{1}{n!}\sum_{len}\frac{n!}{\prod len_i\prod (c_i!)} 2^S n!1lenleni(ci!)n!2S
其中 S S S 见上文。时间复杂度为 n n n 的无序拆分数。

Code
#define int long long
const int N=205,mod=997;
int n,ans,tot,b[N],c[N];
il int qpow(int n,int k=mod-2)
{
    int res=1;
    for(;k;n=n*n%mod,k>>=1) if(k&1) res=res*n%mod;
    return res;
}
il int solve()
{
    int res=0;
    for(int i=1;i<=tot;i++)
    {
        res=(res+(b[i]>>1));
        for(int j=1;j<i;j++) res=(res+__gcd(b[i],b[j]));
    }
    return res;
}
void dfs(int sum)
{
    if(!sum)
    {
        int k=solve();
        int v=1;
        for(int i=1;i<=n;i++) c[i]=0;
        for(int i=1;i<=tot;i++) v=v*b[i]%mod,c[b[i]]++;
        for(int i=1;i<=n;i++)
            for(int j=1;j<=c[i];j++) v=v*j%mod;
        ans=(ans+qpow(2,k)*qpow(v)%mod)%mod;
        return;
    }
    for(int k=b[tot];k<=sum;k++)
    {
        b[++tot]=k,dfs(sum-k);
        tot--;
    }
}
signed main()
{
    n=read();
    b[0]=1; dfs(n);
    printf("%lld\n",ans);
    return 0;
}

P4128 [SHOI2006] 有色图

与上题同理,将 2 2 2 换为 k k k 即可。

你可能感兴趣的:(算法)