为了防止明天就把好不容易听完的东西都还给 rabbit_lb 了,还是记一点吧。
给定集合 G G G 和 G G G上的二元运算 ⋅ \cdot ⋅,满足下列条件称之为群:
群元素个数有限则称为有限群,无限则称为无限群。
有限群 G G G 的元素个数叫做群的阶,记做 ∣ G ∣ |G| ∣G∣。
设 G G G 和 G G G上的二元运算 ⋅ \cdot ⋅ 构成一个群, H H H 是 G G G 的子集,且 H H H 在原有运算下也是一个群,则 H H H 为 G G G 的一个子群。
若群 G G G 的任意两元素均满足交换律,则称 G G G 为交换群(Abel 群)。
[ 1 , n ] [1,n] [1,n] 到自身的一个映射称为 n n n 阶置换,表示为 ( 1 2 … n a 1 a 2 … a n ) \begin{pmatrix}1&2&\dots & n\\a_1&a_2&\dots&a_n\end{pmatrix} (1a12a2……nan),其中 a 1 , a 2 , … , a n a_1,a_2,\dots,a_n a1,a2,…,an 是 [ 1 , n ] [1,n] [1,n] 的一个排列。
n n n 阶置换共有 n ! n! n! 个,同一个置换有 n ! n! n! 中表示方法,如 p 1 = ( 1 2 3 4 3 1 2 4 ) = ( 3 1 4 2 2 3 4 1 ) p_1=\begin{pmatrix}1&2&3&4\\3&1&2&4\end{pmatrix}=\begin{pmatrix}3&1&4&2\\2&3&4&1\end{pmatrix} p1=(13213244)=(32134421)。 n n n 阶置换也可以看作 [ 1 , n ] [1,n] [1,n] 上的一元运算。
设 P 1 = ( 1 2 … n a 1 a 2 … a n ) , P 2 = ( 1 2 … n b 1 b 2 … b n ) P_1=\begin{pmatrix}1&2&\dots & n\\a_1&a_2&\dots&a_n\end{pmatrix},\, P_2=\begin{pmatrix}1&2&\dots & n\\b_1&b_2&\dots&b_n\end{pmatrix} P1=(1a12a2……nan),P2=(1b12b2……nbn),则定义置换乘法 P 1 P 2 = ( 1 2 … n b a 1 b a 2 … b a n ) P_1P_2=\begin{pmatrix}1&2&\dots & n\\b_{a_1}&b_{a_2}&\dots&b_{a_n}\end{pmatrix} P1P2=(1ba12ba2……nban)。
置换乘法不满足交换律,但满足结合律。
[ 1 , n ] [1,n] [1,n] 上由多个置换组成的集合,在 2.1 的乘法定义下构成的群,称为置换群。
[ 1 , n ] [1,n] [1,n] 上的所有( n ! n! n! 个)置换构成的群,称为 n n n 阶对称群,记作 S n S_n Sn。平时所说的 [ 1 , n ] [1,n] [1,n] 上的一个置换群,一定是 S n S_n Sn的子群。
置换 ( 1 2 … n a 1 a 2 … a n ) \begin{pmatrix}1&2&\dots & n\\a_1&a_2&\dots&a_n\end{pmatrix} (1a12a2……nan) 可以写作 ( 1 , a 1 , a a 1 , … ) ( … ) (1,a_1,a_{a_1},\dots)(\dots) (1,a1,aa1,…)(…) 的形式,称为置换的循环表示。E.g. ( 1 2 3 4 5 3 1 2 5 4 ) = ( 132 ) ( 45 ) \begin{pmatrix}1&2&3 & 4&5\\3&1&2&5&4\end{pmatrix}=(132)(45) (1321324554)=(132)(45), ( 1 2 3 4 5 5 2 3 1 4 ) = ( 154 ) ( 2 ) ( 3 ) \begin{pmatrix}1&2&3 & 4&5\\5&2&3&1&4\end{pmatrix}=(154)(2)(3) (1522334154)=(154)(2)(3)。
( a 1 a 2 … a m ) (a_1a_2\dots a_m) (a1a2…am) 称为 m m m 阶循环,有 m m m 种表示方法。
通常情况下,我们可以忽略所有阶为 1 1 1 的循环。两个不相交的循环之间满足交换律。
定理:任意置换可表示成若干不相交循环的积。
证明:考虑令置换 i i i 向 a i a_i ai 连边,图由若干个环构成。显然每个环都可以表示成一个循环。
我们设置换 p p p 的循环表示为 $p=(a_1a_2\dots a_{k_1})(b_1,b_2\dots b_{k_2})\dots (h_1h_2\dots h_{k_n}),其中 $ ∑ i = 1 n k i = n \sum\limits_{i=1}^n k_i=n i=1∑nki=n。设 k k k 阶循环出现的次数为 c k c_k ck。
那么置换 p p p 的格式为 ( 1 ) c 1 ( 2 ) c 2 … ( n ) c n (1)^{c_1}(2)^{c_2}\dots(n)^{c_n} (1)c1(2)c2…(n)cn。E.g. ( 1 ) ( 23 ) ( 4567 ) (1)(23)(4567) (1)(23)(4567) 的格式为 ( 1 ) 1 ( 2 ) 1 ( 4 ) 1 (1)^1(2)^1(4)^1 (1)1(2)1(4)1。
则 S n S_n Sn 中所有相同格式的置换构成一个共轭类。
定理: S n S_n Sn 中 ( 1 ) c 1 ( 2 ) c 2 … ( n ) c n (1)^{c_1}(2)^{c_2}\dots(n)^{c_n} (1)c1(2)c2…(n)cn 所在的共轭类元素个数为 n ! ( c 1 ! c 2 ! … n ! ) ( 1 c 1 2 c 2 … n c n ) \dfrac{n!}{(c_1!c_2!\dotsc_n!)(1^{c_1}2^{c_2}\dots n^{c_n})} (c1!c2!…n!)(1c12c2…ncn)n!。
可以这样理解这个式子:
2 2 2 阶循环叫做对换。
定理:任意循环都可以表示为若干对换的积。
推柿子:
( 1 2 3 … n − 1 ) ( 1 n ) = ( 1 2 … n − 1 2 3 … 1 ) ( 1 2 … n − 1 n n 2 … n − 1 1 ) = ( 1 2 … n − 1 n 2 3 … n 1 ) = ( 1 2 … n ) \begin{aligned} &(1\, 2\, 3\dots n-1)(1\, n)\\ =&\begin{pmatrix}1&2&\dots & n-1\\2&3&\dots&1\end{pmatrix}\begin{pmatrix}1&2&\dots & n-1&n\\n&2&\dots&n-1&1\end{pmatrix}\\ =&\begin{pmatrix}1&2&\dots & n-1&n\\2&3&\dots&n&1\end{pmatrix}\\ =&(1\,2\,\dots\,n) \end{aligned} ===(123…n−1)(1n)(1223……n−11)(1n22……n−1n−1n1)(1223……n−1nn1)(12…n)
那么进一步地,有分解 ( 12 … n ) = ( 12 ) ( 13 ) … ( 1 n ) (1 2\dots n)=(12)(13)\dots(1n) (12…n)=(12)(13)…(1n)。注意每个置换的分解不唯一。
若一个置换能分解为奇数个对换之积,则为奇置换;否则为偶置换。
Warning. 置换相乘的奇偶性类似于自然数加法,而非自然数乘法:奇 x 奇 = 偶,奇 x 偶 = 奇。
设 G G G 是 [ 1 , n ] [1,n] [1,n] 上的一个置换群, k ∈ [ 1 , n ] k\in [1,n] k∈[1,n]。 G G G 中使 k k k 元素保持不变的置换全体,称为 k k k 不动置换类,记作 Z k Z_k Zk。
定理:置换群 G G G 的 k k k 不动置换类 Z k Z_k Zk 是 G G G 的子群。
置换 p i p_i pi 使图像 k k k 变为 l l l,则称 k k k 和 l l l 属于同一个等价类。设 k k k 所在的等价类记为 E k E_k Ek。
如图,将正方形四个顶点红蓝染色,等价类个数为 6 6 6。(每行是一个等价类)
定理:设 G G G 是 [ 1 , n ] [1,n] [1,n] 上的一个 置换群, E k E_k Ek 是 [ 1 , n ] [1,n] [1,n] 在 G G G 的作用下包含 k k k 的等价类, Z k Z_k Zk 是 k k k不动置换类。有 ∣ E k ∣ ∣ Z k ∣ = ∣ G ∣ |E_k||Z_k |=|G| ∣Ek∣∣Zk∣=∣G∣。
证明:每个等价类有 ∣ E k ∣ |E_k| ∣Ek∣ 个元素,同时因为它们属于同一等价类,每个元素的 Z k Z_k Zk 相同。因此这些 Z k Z_k Zk 覆盖了整个 G G G,即每个等价类都有 ∣ E k ∣ ∣ Z k ∣ = ∣ G ∣ |E_k||Z_k |=|G| ∣Ek∣∣Zk∣=∣G∣。
将上式变形,有:
∑ k = 1 n ∣ Z k ∣ ∣ G ∣ = ∑ k = 1 n 1 ∣ E k ∣ \sum_{k=1}^n \frac{|Z_k|}{|G|}=\sum_{k=1}^n \frac{1}{|E_k|} k=1∑n∣G∣∣Zk∣=k=1∑n∣Ek∣1
仔细想一下会发现 ∑ k = 1 n 1 ∣ E k ∣ \sum_{k=1}^n \frac{1}{|E_k|} ∑k=1n∣Ek∣1 就是等价类个数。
然而问题并没有解决,因为 Z k Z_k Zk 不好求。进一步地,我们定义 c 1 ( a k ) c_1(a_k) c1(ak) 表示在置换 a k a_k ak 的作用下不动点的个数,即长度为 1 1 1 的循环个数。那么等价类个数为:
l = 1 ∣ G ∣ ∑ j − 1 n c 1 ( a j ) l=\frac{1}{|G|}\sum_{j-1}^n c_1(a_j) l=∣G∣1j−1∑nc1(aj)
这个式子就是 Burnside 引理。
Pólya 定理是 Burnside 引理的推广,应用于 染色问题 的 循环同构 方案计数。
设 G = { P 1 , P 2 , … , P g } G=\{P_1,P_2,\dots,P_g\} G={P1,P2,…,Pg} 是 n n n 个对象 的一个置换群, C ( P k ) C(P_k) C(Pk) 是置换 P k P_k Pk 的循环的个数,用 m m m 种颜色对 n n n 个对象着色,着色方案数为
l = 1 ∣ G ∣ ∑ j = 1 g m C ( P j ) l=\frac{1}{|G|} \sum_{j=1}^g m^{C(P_j)} l=∣G∣1j=1∑gmC(Pj)
接下来用一个例题说明该定理的具体用法。
用火柴搭一个足球,有多少种方案?
Tips: 足球有 60 60 60 个顶点, 90 90 90 条棱, 12 12 12 个五边形, 20 20 20 个六边形。
则本质不同的方案数为 ( 2 90 + 24 × 2 18 + 20 × 2 30 ) / ( 1 + 24 + 20 + 15 ) (2^{90}+24\times 2^{18}+20\times 2^{30})/(1+24+20+15) (290+24×218+20×230)/(1+24+20+15)。
板子。发现置换只有旋转,考虑枚举旋转的角度,有:
1 n ∑ k = 1 n n gcd ( k , n ) \frac{1}{n}\sum_{k=1}^n n^{\gcd(k,n)} n1k=1∑nngcd(k,n)
枚举 gcd \gcd gcd,可以变成
1 n ∑ d ∣ n n d ∑ k = 1 n d [ gcd ( k , n d ) = 1 ] \frac{1}{n} \sum_{d\mid n}n^d \sum_{k=1}^{\frac{n}{d}}[\gcd(k,\frac{n}{d})=1] n1d∣n∑ndk=1∑dn[gcd(k,dn)=1]
也就是
1 n ∑ d ∣ n n d φ ( n d ) \frac{1}{n}\sum_{d\mid n}n^d\varphi(\frac{n}{d}) n1d∣n∑ndφ(dn)
暴力计算欧拉函数即可通过。
#define int long long
const int mod=1e9+7;
int T,n;
il int qpow(int n,int k=mod-2)
{
int res=1;
for(;k;n=n*n%mod,k>>=1) if(k&1) res=res*n%mod;
return res;
}
il int phi(int x)
{
int res=x;
for(int i=2;i*i<=x;i++)
{
if(x%i==0) res=res/i*(i-1);
while(x%i==0) x/=i;
}
if(x>1) res=res/x*(x-1);
return res;
}
signed main()
{
T=read();
while(T--)
{
n=read();
int ans=0;
for(int d=1;d*d<=n;d++) if(n%d==0)
{
(ans+=qpow(n,d)*phi(n/d)%mod)%=mod;
if(d*d!=n) (ans+=qpow(n,n/d)*phi(d)%mod)%=mod;
}
ans=ans*qpow(n)%mod;
printf("%lld\n",ans);
}
return 0;
}
首先可以发现翻转是可以抵消的。如果我们操作 b 1 b_1 b1,再操作 b 2 b_2 b2,再操作 b 1 b_1 b1,这相当于只操作了一个 b 2 b_2 b2。也就是说,想要得到最终状态我们只关心每个 b i b_i bi 被操作次数的奇偶性。
考虑 Polya 定理,但是发现不动点看起来不好算。
进一步对 b i b_i bi 进行转化,考虑将字符串分成形如 [ b 1 , b 2 ) , [ b 2 , b 3 ) , … [b_1,b_2),[b_2,b_3),\dots [b1,b2),[b2,b3),… 的若干段。那么我们统计不动点的时候只关心每一段是否被翻转。
不难看出,字符串每段的翻转状态与 b b b 的操作次数奇偶性序列构成双射。设 l e n i len_i leni 表示第 i i i 段的长度。
那么如果第 i i i 段被翻转了,这一段本身的贡献是 ∣ A ∣ l e n i |A|^{len_i} ∣A∣leni;否则为 ∣ A ∣ 2 l e n i |A|^{2len_i} ∣A∣2leni。而对于中间长度为 n − 2 l e n m n-2len_m n−2lenm 且永远不会被翻转的段,贡献恒为 ∣ A ∣ n − 2 l e n m |A|^{n-2len_m} ∣A∣n−2lenm。
故设 T = { 1 , 2 , … , n } T=\{1,2,\dots,n\} T={1,2,…,n},本质不同的方案数为
∣ A ∣ n − 2 l e n m 2 m ∑ S ⊆ T ( [ i ∈ S ] ∣ A ∣ l e n i ) + ( [ i ∉ S ] ∣ A ∣ 2 l e n i ) = ∣ A ∣ n − 2 l e n m 2 m ∏ i = 1 m ( ∣ A ∣ l e n i + ∣ A ∣ 2 l e n i ) \begin{aligned} &\frac{|A|^{n-2len_m}}{2^m}\sum_{S\sube T}([i\in S]|A|^{len_i})+([i\notin S]|A|^{2len_i})\\ =&\frac{|A|^{n-2len_m}}{2^m}\prod_{i=1}^m (|A|^{len_i}+|A|^{2len_i}) \end{aligned} =2m∣A∣n−2lenmS⊆T∑([i∈S]∣A∣leni)+([i∈/S]∣A∣2leni)2m∣A∣n−2lenmi=1∏m(∣A∣leni+∣A∣2leni)
直接计算即可,时间复杂度为 O ( m log n ) \mathcal{O}(m\log n) O(mlogn)。
#define int long long
const int N=2e5+5,mod=998244353;
int n,m,A,b[N];
int l[N];
il int qpow(int n,int k=mod-2)
{
int res=1;
for(;k;n=n*n%mod,k>>=1) if(k&1) res=res*n%mod;
return res;
}
signed main()
{
n=read(),m=read(),A=read();
for(int i=1;i<=m;i++) b[i]=read();
for(int i=1;i<=m;i++) l[i]=b[i]-b[i-1];
int sum=1,ans=0;
for(int i=1;i<=m;i++) sum=sum*(qpow(A,l[i])+qpow(A,2*l[i]))%mod;
ans=sum*qpow(A,n-2*b[m])%mod;
ans=ans*qpow(qpow(2,m))%mod;
printf("%lld\n",ans);
return 0;
}
一个比较直观的性质是,一条边无论如何都转不出自己所在的边双连通分量。进一步地,发现实际上一条边转不出自己所在的点双。这似乎有点反直觉,但考虑下图,边无法从一个环移到另一个环:
那么根据这个结论,每个点双之间是独立的。分类讨论:
考虑证明上述结论,我们只需证明存在一种方案,在不改变其他边的情况下交换两条边。
使用上图的做法可以交换两环交界处的两条边。对于不在两环交界处的边,可以先转到交界处再如此操作。
故设这个点双有 c n t cnt cnt 条边,对答案的贡献就是 c n t cnt cnt 条边涂 k k k 个颜色,不区分顺序的方案数。经典插板法,为 ( c n t + k − 1 k − 1 ) \binom{cnt+k-1}{k-1} (k−1cnt+k−1)。
对以上三种情况分别计算贡献即可。
Code#define int long long
const int N=205,mod=1e9+7;
int n,m,k;
vector<int> e[N];
int dfn[N],low[N],tot,num;
vector<int> t[N],q;
void tarjan(int u,int fa)
{
dfn[u]=low[u]=++tot; q.push_back(u);
for(auto v:e[u]) if(v^fa)
{
if(!dfn[v])
{
tarjan(v,u),low[u]=min(low[u],low[v]);
if(low[v]>=dfn[u])
{
num++;
while(q.back()!=u)
{
int x=q.back();
t[num].push_back(x),q.pop_back();
if(x==v) break;
}
t[num].push_back(u);
}
}
else low[u]=min(low[u],dfn[v]);
}
}
int bel[N];
il int qpow(int n,int k=mod-2)
{
int res=1;
for(;k;n=n*n%mod,k>>=1) if(k&1) res=res*n%mod;
return res;
}
il int solve(int m)
{
int res=0;
for(int i=1;i<=m;i++) res=(res+qpow(k,__gcd(i,m)))%mod;
res=res*qpow(m)%mod; return res;
}
int jc[N],inv[N];
il void init(int mx)
{
jc[0]=inv[0]=1;
for(int i=1;i<=mx;i++) jc[i]=jc[i-1]*i%mod;
inv[mx]=qpow(jc[mx]);
for(int i=mx-1;i;i--) inv[i]=inv[i+1]*(i+1)%mod;
}
il int C(int n,int m)
{
if(m>n) return 0;
return jc[n]*inv[n-m]%mod*inv[m]%mod;
}
signed main()
{
n=read(),m=read(),k=read();
for(int i=1;i<=m;i++)
{
int u=read(),v=read();
e[u].push_back(v),e[v].push_back(u);
}
init(m+k);
int ans=1;
for(int i=1;i<=n;i++) if(!dfn[i]) tarjan(i,0);
for(int i=1;i<=num;i++)
{
for(auto x:t[i]) bel[x]=i;
int cnt=0;
for(auto u:t[i])
for(auto v:e[u]) if(bel[v]==i) cnt++;
cnt>>=1;
m-=cnt;
if(cnt>t[i].size()) ans=ans*C(cnt+k-1,k-1)%mod;
else if(cnt==t[i].size()) ans=ans*solve(cnt)%mod;
else ans=ans*qpow(k,cnt)%mod;
}
printf("%lld\n",ans);
return 0;
}
我们可以把每条边选与不选看作对一个完全图上的边黑白染色,这与原题意是等价的。
使用 Polya 定理,先枚举一个置换,并把置换写成循环的形式。考虑对在该置换下不变的染色方案进行计数。
根据一条边的两个端点是否在同一个循环内,分类讨论:
综上,一个 l e n len len 序列对 polya 求和式子的贡献为
S = ∑ i = 1 n ( ⌊ l e n i 2 ⌋ + ∑ j = 1 i − 1 gcd ( l e n i , l e n j ) ) S=\sum_{i=1}^n(\lfloor \frac{len_i}{2}\rfloor +\sum_{j=1}^{i-1} \gcd(len_i,len_j)) S=i=1∑n(⌊2leni⌋+j=1∑i−1gcd(leni,lenj))
发现这只与 l e n len len 数组有关而与具体的置换无关,考虑只枚举 l e n len len 数组,并计算有多少种对应的置换。由 2.3.2 可知,设 c i c_i ci 表示 l e n j = i len_j=i lenj=i 的 j j j 的个数,对应的置换数为
n ! ∏ l e n i ∏ ( c i ! ) \frac{n!}{\prod len_i\prod (c_i!)} ∏leni∏(ci!)n!
总答案为
1 n ! ∑ l e n n ! ∏ l e n i ∏ ( c i ! ) 2 S \frac{1}{n!}\sum_{len}\frac{n!}{\prod len_i\prod (c_i!)} 2^S n!1len∑∏leni∏(ci!)n!2S
其中 S S S 见上文。时间复杂度为 n n n 的无序拆分数。
#define int long long
const int N=205,mod=997;
int n,ans,tot,b[N],c[N];
il int qpow(int n,int k=mod-2)
{
int res=1;
for(;k;n=n*n%mod,k>>=1) if(k&1) res=res*n%mod;
return res;
}
il int solve()
{
int res=0;
for(int i=1;i<=tot;i++)
{
res=(res+(b[i]>>1));
for(int j=1;j<i;j++) res=(res+__gcd(b[i],b[j]));
}
return res;
}
void dfs(int sum)
{
if(!sum)
{
int k=solve();
int v=1;
for(int i=1;i<=n;i++) c[i]=0;
for(int i=1;i<=tot;i++) v=v*b[i]%mod,c[b[i]]++;
for(int i=1;i<=n;i++)
for(int j=1;j<=c[i];j++) v=v*j%mod;
ans=(ans+qpow(2,k)*qpow(v)%mod)%mod;
return;
}
for(int k=b[tot];k<=sum;k++)
{
b[++tot]=k,dfs(sum-k);
tot--;
}
}
signed main()
{
n=read();
b[0]=1; dfs(n);
printf("%lld\n",ans);
return 0;
}
与上题同理,将 2 2 2 换为 k k k 即可。