C++力扣题目239--滑动窗口最大值

给你一个整数数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。

返回 滑动窗口中的最大值 

示例 1:

输入:nums = [1,3,-1,-3,5,3,6,7], k = 3
输出:[3,3,5,5,6,7]
解释:
滑动窗口的位置                最大值
---------------               -----
[1  3  -1] -3  5  3  6  7       3
 1 [3  -1  -3] 5  3  6  7       3
 1  3 [-1  -3  5] 3  6  7       5
 1  3  -1 [-3  5  3] 6  7       5
 1  3  -1  -3 [5  3  6] 7       6
 1  3  -1  -3  5 [3  6  7]      7

示例 2:

输入:nums = [1], k = 1
输出:[1]

思路:

这是使用单调队列的经典题目。

难点是如何求一个区间里的最大值呢? (这好像是废话),暴力一下不就得了。

暴力方法,遍历一遍的过程中每次从窗口中再找到最大的数值,这样很明显是O(n × k)的算法。

暴力代码:(会超出时间限制)

class Solution {
public:
    vector maxSlidingWindow(vector& nums, int k) {
                vectormax;
        for (int back = 0, front = back + k-1; front < nums.size(); back++, front++)
        {
            int tmp=nums[back];
            for (int i = 1; i < k; i++)
            {                
                if (tmp < nums[back + i])
                {
                    tmp = nums[back + i];
                }
            }
            max.push_back(tmp);
        }
        return max;
    }
};

有的同学可能会想用一个大顶堆(优先级队列)来存放这个窗口里的k个数字,这样就可以知道最大的最大值是多少了, 但是问题是这个窗口是移动的,而大顶堆每次只能弹出最大值,我们无法移除其他数值,这样就造成大顶堆维护的不是滑动窗口里面的数值了。所以不能用大顶堆。

此时我们需要一个队列,这个队列呢,放进去窗口里的元素,然后随着窗口的移动,队列也一进一出,每次移动之后,队列告诉我们里面的最大值是什么。

这个队列应该长这个样子:

class MyQueue {
public:
    void pop(int value) {
    }
    void push(int value) {
    }
    int front() {
        return que.front();
    }
};

每次窗口移动的时候,调用que.pop(滑动窗口中移除元素的数值),que.push(滑动窗口添加元素的数值),然后que.front()就返回我们要的最大值。

这么个队列香不香,要是有现成的这种数据结构是不是更香了!

其实在C++中,可以使用 multiset 来模拟这个过程,文末提供这个解法仅针对C++,以下讲解我们还是靠自己来实现这个单调队列。

然后再分析一下,队列里的元素一定是要排序的,而且要最大值放在出队口,要不然怎么知道最大值呢。

但如果把窗口里的元素都放进队列里,窗口移动的时候,队列需要弹出元素。

那么问题来了,已经排序之后的队列 怎么能把窗口要移除的元素(这个元素可不一定是最大值)弹出呢。

大家此时应该陷入深思.....

其实队列没有必要维护窗口里的所有元素,只需要维护有可能成为窗口里最大值的元素就可以了,同时保证队列里的元素数值是由大到小的。

那么这个维护元素单调递减的队列就叫做单调队列,即单调递减或单调递增的队列。C++中没有直接支持单调队列,需要我们自己来实现一个单调队列

不要以为实现的单调队列就是 对窗口里面的数进行排序,如果排序的话,那和优先级队列又有什么区别了呢。

来看一下单调队列如何维护队列里的元素。

动画如下:

C++力扣题目239--滑动窗口最大值_第1张图片

对于窗口里的元素{2, 3, 5, 1 ,4},单调队列里只维护{5, 4} 就够了,保持单调队列里单调递减,此时队列出口元素就是窗口里最大元素。

此时大家应该怀疑单调队列里维护着{5, 4} 怎么配合窗口进行滑动呢?

设计单调队列的时候,pop,和push操作要保持如下规则:

  1. pop(value):如果窗口移除的元素value等于单调队列的出口元素,那么队列弹出元素,否则不用任何操作
  2. push(value):如果push的元素value大于入口元素的数值,那么就将队列入口的元素弹出,直到push元素的数值小于等于队列入口元素的数值为止

保持如上规则,每次窗口移动的时候,只要问que.front()就可以返回当前窗口的最大值。

为了更直观的感受到单调队列的工作过程,以题目示例为例,输入: nums = [1,3,-1,-3,5,3,6,7], 和 k = 3,动画如下:

那么我们用什么数据结构来实现这个单调队列呢?

使用deque最为合适,常用的queue在没有指定容器的情况下,deque就是默认底层容器。

class Solution {
public:
    class Mydeque
    {
    public:
        dequeque;//创建一个从大到小的单调队列
        void pop(int val)
        {
            if (!que.empty() && val == que.front())//只有当滑动窗口的最大值为第一个元素时
             {                                      //才从这个单调队列从移除元素            
                que.pop_front();
            }
        }
        void push(int val)//如果添加元素比前面元素大,将前面元素都尾删
        {
            while (!que.empty() && que.back() < val)
            {
                que.pop_back();
            }
            que.push_back(val);//将该元素尾插到deque中
        }
        int front()
        {
            return que.front();
        }
    };
    vector maxSlidingWindow(vector& nums, int k) {
        Mydeque que;//声明一个自定义的单调队列
        vectorresult;
        for (int i = 0;i < k; i++)//将前k个元素添加到队列
        {
            que.push(nums[i]);
        }
        result.push_back(que.front());//将第一个窗口最大值添加到结果容器
        for (int i = k; i < nums.size(); i++)
        {
            que.pop(nums[i-k]);//滑动窗口移除最前面元素
            que.push(nums[i]);//滑动窗口加入最后的元素
            result.push_back(que.front());//将当前滑动窗口的最大值添加到结果容器中
        }
        return result;
    }
};

再来看一下时间复杂度,使用单调队列的时间复杂度是 O(n)。

有的同学可能想了,在队列中 push元素的过程中,还有pop操作呢,感觉不是纯粹的O(n)。

其实,大家可以自己观察一下单调队列的实现,nums 中的每个元素最多也就被 push_back 和 pop_back 各一次,没有任何多余操作,所以整体的复杂度还是 O(n)。

空间复杂度因为我们定义一个辅助队列,所以是O(k)。

你可能感兴趣的:(leetcode,c++,算法,数据结构)