- 图像拼接-UDIS详细推导和精读Unsupervised Deep Image Stitching: ReconstructingStitched Features to Images
cccc来财
算法计算机视觉深度学习
无监督粗对齐1.基于消融的策略主要是为了找到重叠区,去除无效区2.拼接域的TransformerLayer无监督图像重建1.低分辨率变形单应性变换仅能表示同一深度的空间变换,在实际的图像拼接任务中,由于输入图像的多样性和复杂性,经过第一阶段的粗对齐后,图像往往无法完全对齐。为了让网络能够感知到这些错位区域,特别是在高分辨率和大视差的情况下,设计了低分辨率变形分支,先在低分辨率下对图像进行处理和学习
- 解读Layout Method of Met Mast Based on Macro Zoning and Micro Quantitative Siting in a Wind Farm
赵孝正
风资源与微观选址paper
目录1.风电场气象塔布局方法流程图(简略)内容细化2.风电场气象塔布局方法详细流程图(详细)核心算法和公式详解2.2解读流程(深入浅出)第一阶段:把大风电场分成几个小区域1.看看风在哪里吹得不一样️2.看看风机的位置分布️3.测量风机之间有多"像"4.用智能方法分区第二阶段:在每个区域内找到最好的位置放测量杆5.画格子找可能的位置6.用电脑模拟风的吹动7.筛选出好位置8.找出最最好的位置9.检验我
- 2024年Flutter从入门到精通全网最全学习路线指南
高级技术工程师
flutterflutterflutter中文网flutter中文官方文档
随着移动开发技术的快速发展,Flutter作为Google推出的跨平台开发框架,以其高效的热重载、统一的UI开发体验和卓越的性能表现,正逐渐成为众多开发者青睐的首选工具。为了帮助广大编程爱好者及职业开发者在2024年更好地掌握Flutter技术,本文将为您呈现一套全面且深度的Flutter学习路线图。flutter中文网flutterflutter中文官方文档第一阶段:基础入门与环境配置了解Flu
- RocketMQ中事务消息的实现机制
啊sen丶
rocketmq数据库java
在分布式系统中,确保消息与本地事务的一致性是一个关键问题。RocketMQ通过事务消息提供了对这种需求的支持,其核心思想是通过两阶段提交来确保消息和本地事务的原子性。本文将深入探讨RocketMQ事务消息的实现机制,包括基本流程、事务回查机制以及消息状态的处理。一、事务消息的基本流程(一)第一阶段:半消息的发送当生产者发送事务消息时,RocketMQ会将消息存储在一个特殊的队列RMQ_SYS_TR
- PMP冲刺每日一题(29)
PM简读馆
PMP每日打卡产品经理
试题1标题:尽管出现了资源到位和范围变更的问题,但是项目相对来说进展还是比较顺利。到目前为止,项目第一阶段已经完成。发起人在阶段结束后的评审会议上所考虑的各种决策中,其中最难的是∶A、对下一项目阶段范围变更的授权。B、对下一阶段由于范围变更导致预算增加的授权。C、取消项目。D、为了维持预算而进行范围消减试题2标题:一客户给你一复杂项目的采购工作说明书,该项目为期8个月,未知的东西不多。客户只要你"
- 基于CATIA VBA与Python的自动化音乐生成技术对比研究
Python×CATIA工业智造
python开发语言CATIA二次开发
在工程软件二次开发领域,CATIA也可以许多另类的玩法。通过CATIA自带的VBA可以演奏歌曲,但实际效果往往差强人意。为了进一步优化实际演奏效果,本文以自动生成林宥嘉《说谎》钢琴前奏旋律为案例,探讨两种语言在多媒体控制领域的技术实现差异。一、CATIAVBA实现:极简音频方案1.1技术原理PrivateDeclarePtrSafeFunctionBeepLib"kernel32"(ByValdw
- PMP冲刺每日一题(29)答案解析
PM简读馆
PMP每日打卡产品经理
作者简介:程序员转项目管理领域优质创作者个人邮箱:[
[email protected]]PMP资料导航:PM菜鸟(查阅PMP大纲考点)座右铭:上善若水,水善利万物而不争。绿泡泡:PM简读馆(包含更多PM常用免费资料)目录试题1试题2试题3试题4试题5试题1标题:尽管出现了资源到位和范围变更的问题,但是项目相对来说进展还是比较顺利。到目前为止,项目第一阶段已经完成。发起人在阶段结束后的评审会议上所考
- InternVL:论文阅读 -- 多模态大模型(视觉语言模型)
XiaoJ1234567
LLM论文阅读语言模型人工智能多模态大模型internVL
更多内容:XiaoJ的知识星球文章目录InternVL:扩展视觉基础模型与通用视觉语言任务对齐1.概述2.InternVL整体架构1)大型视觉编码器:InternViT-6B2)语言中间件:QLLaMA。3)训练策略(1)第一阶段:视觉-语言对比训练(2)第二阶段:视觉语言生成训练(3)第三阶段:监督微调(SFT)3.InternVL应用1)对于视觉感知任务2)对于对比任务3)对于生成任务4)对于
- 《高效迁移学习:Keras与EfficientNet花卉分类项目全解析》
机器学习司猫白
深度学习迁移学习keras分类tensorflowefficientnet性能优化
从零到精通的迁移学习实战指南:以Keras和EfficientNet为例一、为什么我们需要迁移学习?1.1人类的学习智慧想象一下:如果一个已经会弹钢琴的人学习吉他,会比完全不懂音乐的人快得多。因为TA已经掌握了乐理知识、节奏感和手指灵活性,这些都可以迁移到新乐器的学习中。这正是迁移学习(TransferLearning)的核心思想——将已掌握的知识迁移到新任务中。1.2深度学习的困境与破局传统深度
- 项目实操分享:一个基于 Flask 的音乐生成系统,能够根据用户指定的参数自动生成 MIDI 音乐并转换为音频文件
mosquito_lover1
aipython
系统架构1.1核心组件MusicGenerator类负责音乐生成的核心逻辑包含MIDI生成和音频转换功能管理音乐参数和音轨生成FluidSynth集成用于MIDI到音频的转换支持高质量的音色合成需要正确配置声音字体文件功能特性2.1音乐风格支持Pop(流行):钢琴主旋律,弦乐伴奏,原声贝斯Rock(摇滚):电吉他主导,失真吉他伴奏,电贝斯Classical(古典):钢琴主旋律,弦乐组伴奏,低音提琴
- 从前端程序员到大模型工程师的转型攻略
七七Seven~
前端语言模型人工智能学习chatgpt算法
在科技日新月异的今天,人工智能(AI)特别是大规模预训练模型(大模型)的发展正引领着新一轮的技术革命。对于一位有志于从专注于用户界面设计和开发的前端程序员转向这个充满潜力领域的专业人士来说,这不仅是一次技术栈的转换,更是一个思维方式和个人职业发展的重大转变。本文将提供一个详尽的指南,帮助你顺利地完成这一过渡。第一阶段:打牢基础(第1-4周)深入了解AI与机器学习概念理解:阅读相关书籍、在线课程或观
- Hadoop的mapreduce的执行过程
画纸仁
大数据hadoopmapreduce大数据
一、map阶段的执行过程第一阶段:把输入目录下文件按照一定的标准逐个进行逻辑切片,形成切片规划。默认Splitsize=Blocksize(128M),每一个切片由一个MapTask处理。(getSplits)第二阶段:对切片中的数据按照一定的规则读取解析返回对。默认是按行读取数据。key是每一行的起始位置偏移量,value是本行的文本内容。(TextInputFormat)第三阶段:调用Mapp
- 数字识别项目
不要天天开心
机器学习人工智能深度学习算法
集成算法·Bagging·随机森林构造树模型:由于二重随机性,使得每个树基本上都不会一样,最终的结果也会不一样。集成算法·Stacking·堆叠:很暴力,拿来一堆直接上(各种分类器都来了)·可以堆叠各种各样的分类器(KNN,SVM,RF等等)·分阶段:第一阶段得出各自结果,第二阶段再用前一阶段结果训练实现神经网络实例利用PyTorch内置函数mnist下载数据。·利用torchvision对数据进
- 01计算机视觉学习计划
依旧阳光的老码农
计算机视觉计算机视觉人工智能
计算机视觉系统学习计划(3-6个月)本计划按照数学→编程→图像处理→机器学习→深度学习→3D视觉→项目实战的顺序,确保从基础到高级,结合理论和实践。第一阶段(第1-2个月):基础夯实✅目标:掌握数学基础、Python/C++编程、基本图像处理1️⃣数学基础(2周)每日2小时线性代数:矩阵运算、特征值分解(推荐《线性代数及其应用》)概率统计:高斯分布、贝叶斯定理微积分:偏导数、梯度下降傅里叶变换:图
- 一、计算机网络技术——概述、性能指标
练习&两年半
计算机网络计算机网络
网络技术发展历程第一阶段一九六九年美国国防部研制的ARPANET,采用“接口报文处理机”将四台独立的计算机主机互联在一起,实现数据的转发。这一阶段的主要特点是TCP/IP协议初步成型第二阶段:采用三级结构,这一阶段的主要特点是将互联网分为了主干网、地区网和校园网。第三阶段:多层次ISP结构的互联网,这一阶段的主要特点是ISP(InternetServiceProvider)首次出现。计算机网络两个
- 2020年“磐云杯”网络空间安全技能竞赛全国拉赛
Beluga
中职网络空间安全赛题安全linux网络网络空间安全中科磐云
2020年“磐云杯”网络空间安全技能竞赛全国拉赛一、竞赛阶段竞赛阶段任务阶段竞赛任务竞赛时间分值第一阶段单兵模式系统渗透测试任务1Wireshark数据包分析100分钟100任务2系统漏洞扫描与利用100任务3服务漏洞扫描于测试100任务4Web渗透测试100任务5Windows操作系统渗透测试100任务6Linux操作系统渗透测试100任务7主机存活扫描渗透测试100备战阶段攻防对抗准备工作20
- TensorFlow\Keras实战100例——BP\CNN神经网络~MINST手写数字识别
AI街潜水的八角
tensorflow人工智能python
一.原理说明BP神经网络是一种多层的前馈神经网络,其主要的特点是:信号是前向传播的,而误差是反向传播的。具体来说,对于如下的只含一个隐层的神经网络模型:BP神经网络的过程主要分为两个阶段,第一阶段是信号的前向传播,从输入层经过隐含层,最后到达输出层;第二阶段是误差的反向传播,从输出层到隐含层,最后到输入层,依次调节隐含层到输出层的权重和偏置,输入层到隐含层的权重和偏置。卷积神经网络(Convolu
- 单片机学习规划
鬼手点金
技术感悟单片机嵌入式硬件
学习单片机是一个系统化的过程,以下是一个合理的学习规划,帮助你从基础到进阶逐步掌握单片机开发技能。第一阶段:基础知识准备电子基础:学习电路基础知识:电阻、电容、电感、二极管、三极管等。掌握基本电路分析方法:欧姆定律、基尔霍夫定律等。了解数字电路基础:逻辑门、触发器、计数器等。C语言编程:学习C语言基础:数据类型、运算符、控制语句、函数、数组、指针等。熟悉C语言在嵌入式开发中的应用:位操作、结构体、
- 零基础到精通Java合集
羽轩GM
Java教程
Java从零基础到精通合集课程大纲,共分为6个阶段、50+个课程模块,每个课程控制在15分钟以内,结合实战案例与高频面试题,适合碎片化学习:第一阶段:Java基础与开发环境搭建(8课时)目标:掌握基础语法与环境配置,完成首个Java程序开发Java开发环境搭建JDK安装与跨平台原理IntelliJIDEA快速入门与HelloWorld编写环境变量配置(PATH与CLASSPATH)数据类型与运算符
- 我用DeepSeek创作的原创歌曲,并成为QQ音乐人啦!
思快奇
都知道AI现在无所不能,下面是我用DeepSeek创作的歌曲并上传到QQ音乐了,请大家鉴赏:提示词:模仿周杰伦的曲风写一首爱情相关的歌曲,要表达从相识的喜悦,相爱的热烈,深爱的平淡,归于平凡的静,分手之后的痛。《四季邮差》词/曲:DeepSeek(前奏:钢琴+雨声采样)樱花落在你发梢的刹那故事像奶茶溢出的甜话单车后座载着整个盛夏邮差正派送初遇的时差谁把心跳写成R&B的节拍烟火在瞳孔里炸开成海我们曾
- 钢琴乐理:调性和音阶
red_redemption
entirelyspontaneous音乐钢琴调性音阶
在每个重复的不同音域上的12个音,都有着相同相同的调性吗是的,在钢琴上每个八度范围内的**12个音**(C、C#、D、D#、E、F、F#、G、G#、A、A#、B),无论它们处于哪个音域,**调性都是相同的**。这就是八度的概念:同一个音名的音符在不同音域中虽然音高不同,但它们在调性中扮演的角色是相同的。具体来说:###1.**相同的音符在不同音域中的调性功能相同**每个音符在不同的八度范围内都保持
- 程序员学商务英语之analogy、popularity、 eloquence、exaggerate、proposition
李匠2024
英文
1448-Here'sananalogy.-打个比方A:Here'sananalogy,learningaforeignlanguageislikelearninghowtoplaythepiano,whichrequirestremendouspractice.It'sreallyatime-consumingandpainstakingjob.打个比方,学习一门外语就像学习弹钢琴,需要大量的练
- 什么是Grok-3?技术特点,场景,潜在问题与挑战
AndrewHZ
深度学习新浪潮深度学习transformer人工智能语言模型LLMGrok-3ElonMusk
Grok-3的技术特点与优势1.超大算力与训练规模算力投入:Grok-3使用了20万块英伟达H100GPU,分两个阶段训练(第一阶段10万GPU训练144天,第二阶段20万GPU训练92天),总计算量是前代Grok-2的10倍。这种规模远超同期其他项目(如印度的1.8万GPU公共设施),显著提升了模型性能。模型规模:推测其参数量可能达到200B-500B,远超DeepSeek-R1等模型,通过推大
- 数字人|通过语音和图片来创建高质量的视频
产品媛Gloria Deng
AI之眼音视频数字人talkingheadAniPortrait框架AI
简介arXiv上的计算机视觉领域论文:AniPortrait:Audio-DrivenSynthesisofPhotorealisticPortraitAnimationAniPortrait:照片级真实感肖像动画的音频驱动合成核心内容围绕一种新的人像动画合成框架展开。研究内容提出AniPortrait框架:用于生成由音频和参考肖像图像驱动的高质量动画。实现方法:分2个阶段实现第一阶段,从音频中提
- 1秒响应、90%决策准确率!京东商家智能助手的技术探索
京东零售技术
人工智能大模型
引言多智能体的架构演进过程:第一阶段:B商城工单自动回复,LLM和RAG结合知识库应答,无法解决工具调用。第二阶段:京东招商站,单一Agent处理知识库问答和工具调用,准确率低&LLM模型幻觉,场景区分度差。第三阶段:京麦智能助手,引入multi-agent架构,master+subagents协同工作模式,把问题分而治之,显著提升准确率。商家助手的算法底座是基于大语言模型(LLM)构建的Mul
- 最新网络安全(黑客)——自学篇
2401_84240189
程序员web安全安全
需要的小伙伴关注我,后台自动发送分享链接~第一阶段:基础操作入门,学习基础知识入门的第一步是学习一些当下主流的安全工具课程并配套基础原理的书籍,一般来说这个过程在1个月左右比较合适。在这个阶段,你已经对网络安全有了基本的了解。如果你学完了第一步,相信你已经在理论上明白了上面是sql注入,什么是xss攻击,对burp、msf、cs等安全工具也掌握了基础操作。这个时候最重要的就是开始打地基!所谓的“打
- 开源的H5即时聊天系统 spring-boot + netty + protobuf + vue ~
lmxdawn
黎明晓spring-bootvuenettywebsocketprotobuf
前言一篇文章引发的思考?一次读公号推文,发现一篇文章写得特好,勾起了好奇心《群聊比单聊,为什么复杂这么多?》,@沈大大.GitHub地址him-vue前往him-netty前往心路历程第一阶段,刚看完文章时,特别兴奋,开始着手,花了一个月把聊天界面基本弄,然后着手于后端,经过些简单的调研,决定用netty搭建一个,后面发现里面的复杂逻辑,再加上心中的火似乎已经熄灭,最后…第二阶段,最近刷公文时又刷
- github项目推荐:少儿图形化编程启蒙游戏
橙狮科技
github大前端typescriptjavascript前端框架
介绍codeABC是一个少儿编程启蒙项目,包括6个编程主题,每个主题包括超过20个关卡,typescript编写,基于Phaser游t戏引擎(https://github.com/photonstorm/phaser),不错的前端学习项目。纯web开发,可以发布为网页或APP。github仓库https://github.com/techtogood/CodeABC在线体验ffmagic.com/
- 关于网络安全运营工作与安全建设工作的一些思考
码农x马马
安全web安全人工智能性能优化linux
以下内容是个人成长过程中对于网络安全运营工作的理解和思考,希望通过这篇文章帮助大家更好的去做安全运营体系化建设,开始吧!文章目录*一、网络安全运营是什么?二、网络安全运营建设阶段**第一阶段:设备限制阶段第二阶段:能力挖掘阶段第三阶段:运营转型阶段第四阶段:查漏补强阶段第五阶段:运营优化阶段三、网络安全框架及模型介绍***(1)PDR模型*(2)P2DR模型*(3)PDRR模型*(4)PDR2A模
- 神经网络新手入门(2)基础认知:神经网络发展简史
caridle
神经元网络神经网络人工智能深度学习
第一阶段:基础认知:神经网络发展简史让我们用武侠小说的方式打开这段科技史,你会发现神经网络的发展史比金庸江湖还要精彩:第一章:江湖初现(1943-1958)1943年,两位奇侠麦卡洛克和皮茨在《神经活动中内在思想的逻辑演算》中打造了江湖第一把"宝剑"——M-P神经元模型。这把剑虽然简陋(只能做简单的逻辑运算),却奠定了整个武林的基础,就像武侠世界里最早的内功心法。1943年,两位奇侠麦卡洛克和皮茨
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$