- Python librosa模块介绍
骚火棍
人生苦短我用Pythonlibrosa
librosa语音信号处理模块参考链接:https://www.cnblogs.com/LXP-Never/p/11561355.html
- 嵌入式人工智能实验方向
周南音频科技教育学院(AI湖湘学派)
AI深度学习理论与实践研究音频算法设计研究开发音频算法人工智能神经网络
加我微信hezkz17进嵌入式人工智能研究开发交流答疑群。1可在stm32,esp32,NXP,arduino,树莓派上部署人工智能模型,图像理解,图像分类。2采用BESSOC部署深度学习语音信号处理算法,降噪算法3根据公式用C语言实现卷积CNN,或者采用开源的嵌入式机器学习,嵌入式深度学习,嵌入式神经网络开源sdk,移植,部署到MCU或者SOC,
- 操作系统复习总结——文件管理
是dream
操作系统操作系统文件管理
博客主页:是dream系列专栏:深度学习环境搭建、环境配置问题解决、自然语言处理、语音信号处理、项目开发每日语录:但愿每次回忆,对生活都不感到负疚。感谢大家点赞收藏⭐指正✍️目录一、文件管理概述1、文件基本概念(1)定义(2)基本调度单位(3)文件结构2、文件控制块与索引节点(1)文件属性(2)文件控制块(FCB)(3)索引结点3、文件的操作(操作系统向上提供哪些功能?)4、文件保护(1)加以控制
- 频谱细化-----CZT算法介绍及MATLAB实现
YHCANDOU
频谱细化matlab算法开发语言
CZT变换采用FFT算法可以很快算出全部N点DFT值,即Z变换X(z)X\left(z\right)X(z)在Z平面单位圆上的全部等间隔取样值。实际中,也许不需要计算整个单位圆上Z变换的取样,如对于窄带信号,只需要对信号所在的一段频带进行分析,这时希望频谱的采样集中在这一频带内,以获得较高的分辨率,而频带以外的部分可不考虑,或者对其他围线上的Z变换取样感兴趣,例如语音信号处理中,需要知道Z变换的极
- MATLAB环境下一种音频降噪优化方法—基于时频正则化重叠群收缩
哥廷根数学学派
信号处理小波分析图像处理语音识别人工智能
语音增强是语音信号处理领域中的一个重大分支,这一分支已经得到国内外学者的广泛研究。当今时代,随着近六十年来的不断发展,己经产生了许多有效的语音增强算法。根据语音增强过程中是否利用语音和噪声的先验信息,语音增强算法一般被归类为两类,一类是无先验信息的语音增强算法,另外一类则是具有先验信息的语音增强算法。在第一类无先验信息语音增强算法中,比较常用的语音增强算法有谱减算法、基于统计模型的算法、基于信号子
- 深度学习环境搭建——利用anaconda+pytorch搭建自己的深度学习环境(以YOLOv5环境搭建为例)2023.9.26最新
是dream
深度学习环境搭建深度学习pytorchYOLO
博客主页:是dream系列专栏:深度学习环境搭建、环境配置问题解决、自然语言处理、语音信号处理、项目开发每日语录:要有最朴素的生活和最遥远的梦想,即使明天天寒地冻,山高水远,路远马亡。感谢大家点赞收藏⭐指正✍️前言相信大家在搭建自己的深度学习环境时总会遇到各种问题,特别是小白。记得第一次配置自己的深度学习环境时,什么anaconda、pytorch,我都不知道这些东西是干嘛的,就知道一个YOLO,
- 音视频开发成长之路与音视频知识总结
徐福记456
音视频开发音视频开发基础音视频进阶成长音视频工作方向音视频开源库流媒体协议与音视频书籍
音视频涉及语音信号处理、数字图像处理、信息论、封装格式、编解码、流媒体协议、网络传输、渲染、算法等。在现实生活中,音视频扮演着越来越重要的角色,比如视频会议、直播、短视频、播放器、语音聊天等。因此,从事音视频是一件比较有意义的事情,机遇与挑战并存。本文将从几个维度进行介绍:音视频开发基础、音视频进阶成长、音视频工作方向、音视频开源库、流媒体协议与书籍。目录一、音视频开发基础1、音频基础2、通用基础
- 音频筑基:巴克谱和梅尔谱辨析
来知晓
语音处理音视频
音频筑基:巴克谱和梅尔谱辨析是什么深入了解相关参考在音频信号处理中,巴克谱和梅尔谱是我们经常遇到的概念,也是语音处理中常用到的频域特征,这里谈谈自己对它们的理解。是什么巴克谱又称BarkSpectrum,梅尔谱又称MelSpectrum,其中异同梳理如下:相同点:Bark谱和Mel谱都是将线性频谱映射到非线性谱上的表征,根据不同频带的感知能力来划分,但它们的核心思想不同。这两种谱都是语音信号处理中
- 基于sy3130光感入耳检测功能成功实现
周南音频科技教育学院(AI湖湘学派)
音频算法设计研究开发算法
基于sy3130光感入耳检测功能成功实现是否需要申请加入数字音频系统研究开发交流答疑群(课题组)?可加我微信hezkz17,本群提供音频技术答疑服务,+群赠送语音信号处理降噪算法,蓝牙耳机音频,DSP音频项目核心开发资料,1芯片介绍2电路实现3寄存器列表
- 低信噪比环境下的语音端点检测
jUicE_g2R
经验模态分解EMD语音识别语言信号处理低信噪比matlab
端点检测技术是语音信号处理的关键技术之一为提高低信噪比环境下端点检测的准确率和稳健性,提出了一种非平稳噪声抑制和调制域谱减结合功率归一化倒谱距离的端点检测算法1端点检测1-1定义定义:在存在背景噪声的情况下检测出语音的起始点和结束点(这里的重点是噪声环境下语音信号的处理)1-2应用需求应用于语音信号处理:语音增强、语音识别、编码和传输需求是:人们希望在远场或者嘈杂的环境中也能用语音控制智能设备,因
- 【Matlab语音加密】语音信号加密解密(带面板)【含GUI源码 181期】
Matlab佛怒唐莲
Matlab完整代码Matlab语音处理matlab语音识别开发语言
一、代码运行视频(哔哩哔哩)【Matlab语音加密】语音信号加密解密(带面板)【含GUI源码181期】二、matlab版本及参考文献1matlab版本2014a2参考文献[1]韩纪庆,张磊,郑铁然.语音信号处理(第3版)[M].清华大学出版社,2019.[2]柳若边.深度学习:语音识别技术实践[M].清华大学出版社,2019.[3]李波,张晓力,石旭.基于Matlab的语音信号加密处理[J].信息
- 【Matlab语音处理】汉宁窗FIR陷波滤波器语音信号加噪去噪【含GUI源码 1711期】
Matlab佛怒唐莲
Matlab完整代码Matlab语音处理matlab语音识别开发语言
一、代码运行视频(哔哩哔哩)【Matlab语音处理】汉宁窗FIR陷波滤波器语音信号加噪去噪【含GUI源码1711期】二、matlab版本及参考文献1matlab版本2014a2参考文献[1]韩纪庆,张磊,郑铁然.语音信号处理(第3版)[M].清华大学出版社,2019.[2]柳若边.深度学习:语音识别技术实践[M].清华大学出版社,2019.[3]尹学爱,马国利,冯伟伟.基于MATLAB的声音信号频
- 语音信号处理共振峰
H_uer
语音信号处理基础
窄带语谱图和宽带语谱图首先,什么是语谱图。最通常的,就是语音短时傅里叶变换的幅度画出的2D图。之所以是通常的,是因为可以不是傅里叶变换。“窄带”,顾名思义,带宽小,则时宽大,则短时窗长,窄带语谱图就是长窗条件下画出的语谱图。“宽带”,正好相反。至于“横竖条纹”,窄带语谱图的带宽窄,那么在频率上就“分得开”,即能将语音各次谐波“看得很清楚”,即表现为“横线”。“横”就体现出了频率分辨率高。分辨率可以
- 语音信号处理-基本概念(二):音频通道数、采样频率、采样位数、采样个数(样本数)、一帧音频的大小、每秒播放的音频字节大小、一帧的播放时长、音频重采样
u013250861
Audio音视频语音识别人工智能
对于下面data和linesize的解释(参考下面3.4中的av_samples_alloc_array_and_samples函数说明):data是通道的意思,例如双通道,data[0]代表左声道,data[1]代表右声道。linesize为采样个数的最大大小字节空间。例如aac,64位,双通道,则对于交错模式最大为:linesize=2x1024x8=16384。此时也是一个音频帧的大小。对于
- 用Matlab进行语音信号处理
后端架构小白
matlab信号处理语音识别
用Matlab进行语音信号处理语音信号处理是数字信号处理中的一个重要分支,主要涉及语音信号的采集、压缩、去噪、降噪等处理。Matlab是一个强大的数学计算工具,也是语音信号处理中常用的工具之一。本文将介绍如何使用Matlab对语音信号进行采集、去噪和压缩处理。语音信号采集语音信号采集需要使用麦克风或其他音频输入设备。在Matlab中,可以使用audiorecorder函数进行音频采集。下面的代码演
- 语音信号处理——噪声抑制
DEDSEC_Roger
信号处理音频
简介噪声抑制技术用于消除背景噪声,改善语音信号的信噪比和可懂度,让人和机器听的更清楚常见的噪声种类:人声噪声、街道噪声、汽车噪声噪声抑制方法的分类:按照输入通道数分:单通道降噪、多通道降噪按照噪声统计特性分:平稳噪声抑制、非平稳噪声抑制按照降噪方法分:被动降噪、主动降噪下面介绍的方法用于单通道的、被动的、平稳噪声抑制MinimaControlledRecursiveAveraging(MCRA)传
- 语音信号处理:librosa
智慧医疗探索者
AI数字人技术音视频处理信号处理语音识别librosa
1librosa介绍Librosa是一个用于音频和音乐分析的Python库,专为音乐信息检索(MusicInformationRetrieval,MIR)社区设计。自从2015年首次发布以来,Librosa已成为音频分析和处理领域中最受欢迎的工具之一。它提供了一套清晰、高效的函数来处理音频信号,并提取音乐和音频中的信息。Librosa在音乐和音频分析方面提供了强大而灵活的工具,适用于从基础研究到实
- 如何理解短时傅里叶变换(Short Time Fourier Transform, STFT)
林深迷了鹿
语音信号处理语音识别机器学习人工智能
因为最近一直在学习语音信号的处理,看了HaythamFayek的一篇博客后关于什么是傅里叶变换感到很迷惑,所以就专门写下一篇文章,整理一下我从网页上搜集的内容。短时傅里叶变换(ShortTimeFourierTransform,STFT)是一个用于语音信号处理的通用工具.它定义了一个非常有用的时间和频率分布类,其指定了任意信号随时间和频率变化的复数幅度.实际上,计算短时傅里叶变换的过程是把一个较长
- HMM(Hidden Markov Model)详解——语音信号处理学习(三)(选修一)
LotusCL
声音信号处理学习信号处理学习语音识别人工智能
参考文献:SpeechRecognition(Option)-HMM哔哩哔哩bilibili2020年3月新番李宏毅人类语言处理独家笔记HMM-6-知乎(zhihu.com)隐马尔可夫(HMM)的解码问题+维特比算法-知乎(zhihu.com)本次省略所有引用论文目录一、介绍二、建模单位StatesState由来转移概率与发射概率三、Alignment四、深度学习下的HMM方法一:Tandem方法
- RNN-T Training,RNN-T模型训练详解——语音信号处理学习(三)(选修三)
LotusCL
声音信号处理学习rnn信号处理学习人工智能语音识别
参考文献:SpeechRecognition(option)-RNN-TTraining哔哩哔哩bilibili2020年3月新番李宏毅人类语言处理独家笔记AlignmentTrain-8-知乎(zhihu.com)本次省略所有引用论文目录一、如何将Alignment概率加和对齐方式概率如何计算概率加和计算原理概率加和计算方式二、RNN-T的模型训练模型训练思路偏微分计算-1-展开变形偏微分计算-
- Alignment of HMM, CTC and RNN-T,对齐方式详解——语音信号处理学习(三)(选修二)
LotusCL
声音信号处理学习rnn信号处理学习人工智能语音识别
参考文献:SpeechRecognition(option)-AlignmentofHMM,CTCandRNN-T哔哩哔哩bilibili2020年3月新番李宏毅人类语言处理独家笔记Alignment-7-知乎(zhihu.com)本次省略所有引用论文目录一、E2E模型和CTC、RNN-T的区别E2E模型的思路CTC、RNN-T模型的思路二、待解决的问题三、对齐方式介绍四、穷举方式穷举HMM穷举C
- 数字图像处理(1):灰度直方图、直方图均衡化处理(入门必看)
是dream
数字图像处理图像处理
博客主页:真的睡不醒系列专栏:深度学习环境搭建、环境配置问题解决、自然语言处理、语音信号处理、项目开发每日语录:闲看花开,静待花落,冷暖自知,干净如始。感谢大家点赞收藏⭐指正✍️前言:本文详细介绍了如何使用python对图像进行基本的操作,包括对图像的读取、显示、修改和保存,通过Matplotlib对图像进行绘制、显示和保存,最后详细讲解了如何绘制直方图,并对直方图进行均衡化处理。欢迎大家参考和学
- 快速调用百度AI开放平台的API,以OCR通用文字识别为例(封装函数进行连续调用)
是dream
项目开发百度人工智能百度云python
博客主页:真的睡不醒系列专栏:深度学习环境搭建、环境配置问题解决、自然语言处理、语音信号处理、项目开发每日语录:眼里有不朽的光芒心里有永恒的希望。感谢大家点赞收藏⭐指正✍️前言百度开放平台允许开发者访问和利用百度的各种服务和功能,包括语音识别、人脸识别、文字识别、自然语言处理等等。这些API能够满足我们绝大部分需求,来供我们学习和使用。本文就OCR文字识别为例,详细介绍新手小白如何调用百度开放平台
- NLP自然语言处理——关键词提取之 TF-IDF 算法(五分钟带你深刻领悟TF-IDF算法的精髓)
是dream
自然语言处理tf-idf人工智能
博客主页:真的睡不醒系列专栏:深度学习环境搭建、环境配置问题解决、自然语言处理、语音信号处理、项目开发每日语录:要有最朴素的生活和最遥远的梦想,即使明天天寒地冻,山高水远,路远马亡。感谢大家点赞收藏⭐指证✍️前言关键词提取是将文本中的关键信息、核心概念或重要主题抽取出来的过程。这些关键词可以帮助人们快速理解文本的主题,构建文本摘要,提高搜索引擎的效率,甚至用于文本分类和信息检索等应用领域。因此,关
- NLP自然语言处理——关键词提取之 TextRank 算法(五分钟带你深刻领悟TextRank算法的精髓)保姆级教程
是dream
自然语言处理人工智能nlp
博客主页:真的睡不醒系列专栏:深度学习环境搭建、环境配置问题解决、自然语言处理、语音信号处理、项目开发每日语录:你要做冲出的黑马而不是坠落的星星。感谢大家点赞收藏⭐指正✍️前言关键词提取是将文本中的关键信息、核心概念或重要主题抽取出来的过程。这些关键词可以帮助人们快速理解文本的主题,构建文本摘要,提高搜索引擎的效率,甚至用于文本分类和信息检索等应用领域。因此,关键词提取在文本分析和自然语言处理中具
- 操作系统之经典同步问题(司机售票员、文件打印、多个生产者消费者、放水果吃水果、读者优先、写者优先、哲学家死锁问题)
是dream
操作系统算法
博客主页:真的睡不醒系列专栏:深度学习环境搭建、环境配置问题解决、自然语言处理、语音信号处理、项目开发每日语录:闲看花开,静待花落,冷暖自知,干净如始。感谢大家点赞收藏⭐指正✍️目录一、司机与售票员进程同步问题二、PA、PB、PC合作解决文件打印问题三、多个生产者和多个消费者问题四、放水果吃水果问题五、读者写者问题六、哲学家吃饭问题一、司机与售票员进程同步问题问题描述:在公共汽车上,司机和售票员的
- 如何快速搭建一个大模型?简单的UI实现
是dream
项目开发星火大模型对话框UI设计
博客主页:真的睡不醒系列专栏:深度学习环境搭建、环境配置问题解决、自然语言处理、语音信号处理、项目开发每日语录:相信自己,一路风景一路歌,人生之美,正在于此。感谢大家点赞收藏⭐指正✍️前言:本文章纯属是自己无聊,调用了星火认知大模型的接口,并封装成一个脚本。但测试感觉星火认知大模型也不算太智能,但奈何人家提供了免费的token,当然,也可以根据自己的需要,去调用国内的一些大模型。目录一、申请免费的
- A2B master配置32通道传输数据超带宽了,如何解决?
周南音频科技教育学院(AI湖湘学派)
车载DSP音频系统研究开发网络服务器运维
是否需要申请加入数字音频系统研究开发交流答疑群(课题组)?可加我微信hezkz17,本群提供音频技术答疑服务,+群赠送语音信号处理降噪算法,蓝牙耳机音频,DSP音频项目核心开发资料,A2Bmaster配置32通道,超带宽了,如何解决?如果A2BMaster配置了32个通道,并且超过了带宽限制,你可以尝试以下几种解决方案:减少通道数量:将通道数量从32个减少到适当的数量,以确保不超过系统的带宽限制。
- 基于DSP/SOC音乐灯效系统设计方法
周南音频科技教育学院(AI湖湘学派)
音频算法设计研究开发信号处理音频人工智能算法
音乐灯效系统设计方法是否需要申请加入数字音频系统研究开发交流答疑群(课题组)?可加我微信hezkz17,本群提供音频技术答疑服务,+群赠送语音信号处理降噪算法,蓝牙耳机音频,DSP音频项目核心开发资料,三种方法:(1)MIC采集音乐信号变化,(2)直接获取SPK模拟音频信号处理
- 基于低通滤波器的语音信号加噪与去噪(附带Matlab源码)
代码创造之旅
matlab语音识别人工智能Matlab
基于低通滤波器的语音信号加噪与去噪(附带Matlab源码)在语音信号处理中,噪声是一个常见的问题,它会降低语音信号的质量和可理解性。为了提高语音信号的清晰度和减少噪声的影响,可以使用低通滤波器进行信号的加噪与去噪处理。本文将介绍基于低通滤波器的语音信号加噪与去噪的原理,并提供相应的Matlab源码。加噪处理在语音信号加噪处理中,我们可以使用低通滤波器来滤除高频噪声成分,从而提高信号的质量。以下是基
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比